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Summary
This updates Ref.1 bringing its calculation of out-o-plane (OOP) torques on TF coil conductors up to date for the design point adopted on 04May2010.  It also includes a linear elastic model for the TF conductors and their supporting structures to estimate TF conductor torsion for any specified set of currents in the PF coils, OH coil, and plasma.  For the 96 previously defined plasma equilibria and for the +24 kA maximum OH precharge case, the peak torsional shear stress in the TF centerstack calculated by these methods is 25.18 MPa.
As in Ref.1, this memo advances a simple but accurate algorithm for evaluating out-of-plane torques due to magnetic interactions of poloidal magnetic fields with TF conductor current.  This is the subcect of pages 1-14 and Appendix 1 (pages 43-50). The torsional response model is the subject of pages 15- -42 and Appendix 2 (pages 51-69).  Instead of the conventional complicated approach involving numerical integration of vector cross products of position vectors, current density vectors and poloidal magnetic field vectors at many evaluation points chosen along a segment of the TF conductor, this torque algorithm multiplies the [(130kA)(36turn)=4,680,000 A] TF current magnitude by the difference of the per radian poloidal magnetic fluxes evaluated at the two ends of the segment.  (Note that the product of amperes and webers has the torque units, newton-meters.)  The results are mathematically equivalent to numerically integrating the vector cross product of position and force over the TF conductor, but the torque algorithm advanced herein requires far less computation and is subject to far less numerical error.   A full exposition of the torque algorithm is given in Appendix 1.
This torque algorithm is applied to the NSTX CS upgrade, using the latest layout for the TF conductor outline and using the PF/OH coil set of the 04May2010 design point.  To increase numerical accuracy the TF conductor is partitioned into subregions separated by internal current streamlines estimated by equally subdividing the conductor cross section area.  Torque loading densities for current ranges in each of the 12 PF and 1 OH coil circuits and for the plasma current are plotted.  MATLAB version R2010b was used for all numerical calculations and plots.
Total Torque is Zero

The sum total of Z-axis Lorenz magnetic torques on the TF conductor system is identically zero.  starting and ending poloidal fluxes by definition have zero difference.   However, it also logically follows from the facts that (1) the sum total of Lorenz torques on all NSTX conductors is always zero (in order for conservation of total angular momentum to hold true), and (2) Lorenz torques on coaxial PF and OH coil conductors are identically zero due to their axisymmetric shape and their alignment with the toroidal field.  However, although the total TF system torque is zero, the torques on portions of the TF system can be large enough to require attention to providing sufficient support or in avoiding excessive stresses.
Torque Algorithm Results

Concerns have been expressed about supporting net torques on the TF outer legs by the opposing net torques on the TF central bundle and radial conductor assemblies.  A simple algebraic formula is obtained from the torque algorithm for net torque on the TF outer legs, as Eq.(1).  (Different from Ref.1, the TF outer leg boundary is here set at the umbrella clamps.)

[image: image208.emf]
(1)
Note that vertically symmetric currents in OH, PF4 and PF5 circuits do not contribute to net TF OuterLeg torque, nor does plasma current in the vertically symmetric plasma model used herein.  
Larger typical values are predicted for net torque summed over the entire top half of the TF system, including the upper half of the TF central bundle, the upper radial assemblies, and the upper half of the TF outer legs.  These torques are of course balanced by opposing torques developed in the bottom half of the TF system.  A formula for net torque on the top half of the TF system is as follows:
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(2)
Similar torque formulae can be obtained for out-of-plane torques on any TF conductor circuit segment, using poloidal magnetic flux values calculated at that segment's ends. Note that the shape of the TF conductor segment between its ends is not needed to determine its net torque. 
Poloidal magnetic flux can be evaluated by use of the Ref.(2) Excel spreadsheet.  This tool automatically calculates poloidal flux on a grid of 5 cm (r,z) squares extending throughout the entire NSTX CSU poloidal half-plane out past its TF conductors, for any user-specified set of currents in the OH coil, PF coils, and plasma.
OOP Torque Analysis of NSTX CSU

As in Ref.1, the NSTX CSU TF conductor shape definition was provided by Peter Titus on 26 June 2009 in a file containing XYZ 3D coordinates of 4229 nodal points delimiting hexahedral elements in a 30 degree sector global TF model.  These were subsequently culled and sorted by various automated MATLAB methods to obtain a poloidal half-plane outline consisting of 322 points, including an inner outline trace of 159 points and an outer outline trace of 163 points.  These points were only modified from the provided file by setting their third coordinate values to zero without changing their other two coordinates. The resulting TF conductor outline appears in the following Fig.(1) MATLAB plot.
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Figure 1: Poloidal Projection Outline of TF Conductor, 322 points

Parametric variables were then calculated and saved for each point in each of the two outline traces, starting from zero at their radially innerpoints on the (z=0) horizontal midplane and adding the distances to each successive point while proceeding in the counterclockwise direction.   After returning to the starting points, the saved parametric values were then normalized by dividing each cumulative distance value by its contour's total perimeter length.  The resulting parametric variables, which range from 0 to 1, roughly represent poloidal angle.  
Finally, 2000 uniformly spaced values of this poloidal angle variable ranging from 0 to 1 were generated and 2000 corresponding r and z coordinate values were obtained for each of the TF coil's inner and outer outline curves by using MATLAB's standard interpolation m-file subroutines.  The two resulting 2000-point outlines are plotted below in Fig. (2).  Note that although they appear almost identical to the previous TF outline plot, each outline here consists of 2000 equally spaced points which are now linked to each other through their common normalized poloidal "angle" location parametric variable values.  In each contour of this model, node point number 1 is also number 2000, located at Z=0 in the TF centerstack.  Constant radius points on the centerstack's outer edge include 1 through 363 at the bottom and from 1638 at the top through 2000.  TF leads extending to the flexes encompass nodes out to 371 and to 1630. 
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Figure 2: Poloidal Projection Outline of TF Conductor, 4000 points

Note that the TF current stream function which varies with the (r,z) location in the poloidal half-plane is defined as the total TF system current that passes through the 3D circle sharing those cylindrical coordinates.  It varies from zero at (r,z) locations not linking the TF coils to the total TF current (i.e., number of turns times current per turn) at locations within the TF coil system bore.  At intermediate locations within the TF conductor it varies between those values.  Level set contours of the TF current stream function are also streamlines of the TF current flow.
As plotted, the (red) outer outline is the zero value contour of the TF current stream function and the (blue) inner outline is the contour of the TF current stream function at its full, 100% of TF system current, value.  It was decided for calculations herein to try to improve accuracy by estimating how the TF current is distributed within the TF conductor.  This was done by estimating the (r,z) coordinate locations at each of 2000 poloidal variable points for TF current stream function contours enclosing 25%, 50%, and 75%, respectively, of the total TF current.  Ideally these contour estimates would be obtained by solving conductive media equations using ohms law, but this was not done.  Instead, the estimated contours were obtained by interpolation between the outline coordinates for common poloidal angle variables. For the vertical (z) coordinates, linear interpolation was used directly.  However, a different method was used to interpolate the r coordinate since conductor thickness in the toroidal direction varies in proportion to r for locations in and near the TF central bundle but takes on constant thickness for outer locations.  Linear interpolation of a nonlinear function was used, where that function switched from a quadratic for inner locations to a straight line for outer locations.  For this purpose the switchover radius between variable and constant toroidal thickness was estimated as r=0.3339 meters, based on inspection of plots showing the 4229 points of the global model.

The Fig.(3) plot follows showing the resulting estimated three internal contours and the two bounding contours of the TF current stream function.
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Figure 3: Poloidal Projection of TF Current Stream Function Contours, 10000 points
It may be useful to have plots showing r and z for the bounding outlines and internal contours as functions of the poloidal angle parametric variable.  These follow:
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Figure 4: Radial Coordinates of TF Current Stream Function Contours vs Poloidal Variable
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Figure 5: Vertical Coordinates of TF Current Stream Function Contours vs Poloidal Variable

The primary change requiring this update is modification of the designs for the OH coil and for th six coils, PF1AU, PF1BU, PF1CU, PF1CL, PF1BL, and PF1AL which led to the present design point which was adopted 04May2010.  These changes included small changes in the dimensions and locations of the seven altered coils but quite large changes in the numbers of turns incorporated within each coil.  Details of the poloidal field system for the 04May2010 design point have been reproduced here as Table 1 and are depicted in Fig.6.  These include 23 coil windings that are configured into 13 series-connected circuits.  They also include a crude. approximate magnetics model representing the plasma as a rectangular cross section uniform current density single-turn coil winding.  
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Figure 6: Poloidal Projection of PF&OH coils, with TF Current Stream Function Contours 

Table 1:  04May2010 Design Point Poloidal Field System for PF Coils, OH Coil, Plasma 
(As Used For Magnetics Calculations)
	Coil Power
	Series-connected Winding Geometry
	Rectangular Matrix of Turns

	Circuit Name
	Rectangular
	R (center)
	∆R 
	Z (center)
	∆Z
	# in z direction
	# in r direction
	Total # turns

	 
	Winding Name
	cm
	cm
	cm
	cm
	
	
	

	PF1AU
	PF1AU
	31.93
	5.9268
	159.06
	46.3533
	16
	4
	64

	PF1BU
	PF1BU 
	40.038
	3.36
	180.42
	18.1167
	16
	2
	32

	PF1CU
	PF1CU 
	55.052
	3.7258
	181.36
	16.6379
	10
	2
	20

	PF2U
	PF2AU
	79.9998
	16.2712
	193.3473
	6.797
	2
	7
	14

	
	PF2BU
	79.9998
	16.2712
	185.26
	6.797
	2
	7
	14

	PF3U
	PF3AU
	149.446
	18.6436
	163.3474
	6.797
	2
	7.5
	15

	
	PF3BU
	149.446
	18.6436
	155.26
	6.797
	2
	7.5
	15

	PF4
	PF4BU
	179.4612
	9.1542
	80.7212
	6.797
	4
	2
	8

	
	PF4CU
	180.6473
	11.5265
	88.8086
	6.797
	2
	4.5
	9

	
	PF4BL
	179.4612
	9.1542
	-80.7212
	6.797
	4
	2
	8

	
	PF4CL
	180.6473
	11.5265
	-88.8086
	6.797
	2
	4.5
	9

	PF5
	PF5AU
	201.2798
	13.5331
	65.2069
	6.858
	2
	6
	12

	
	PF5BU
	201.2798
	13.5331
	57.8002
	6.858
	2
	6
	12

	
	PF5AL
	201.2798
	13.5331
	-65.2069
	6.858
	2
	6
	12

	
	PF5BL
	201.2798
	13.5331
	-57.8002
	6.858
	2
	6
	12

	PF3L
	PF3BL
	149.446
	18.6436
	-155.26
	6.797
	2
	7.5
	15

	
	PF3AL
	149.446
	18.6436
	-163.347
	6.797
	2
	7.5
	15

	PF2L
	PF2LA
	79.9998
	16.2712
	-193.347
	6.797
	2
	7
	14

	
	PF2LB
	79.9998
	16.2712
	-185.26
	6.797
	2
	7
	14

	PF1CL
	PF1CL
	55.052
	3.7258
	-181.36
	16.6379
	10
	2
	20

	PF1BL
	PF1BL
	40.038
	3.36
	-180.42
	18.1167
	16
	2
	32

	PF1AL
	PF1AL
	31.93
	5.9268
	-159.06
	46.3533
	16
	4
	64

	OH
	OH
	24.2083
	6.934
	0
	424.16
	221
	4
	884

	PLASMA
	PL
	107.000
	110.000
	0.000
	200.000
	1
	1
	1


Next, poloidal flux was calculated for each of the 2000 locations on each of the five contours for each of the 13 coil circuits and for a crude electromagnetic model of a "plasma" having uniform current density and a rectangular cross section extending over 0.52<r<1.63 and -1<z<1, all in meters.  Plots of the computed poloidal magnetic fluxes appear below in Figs.(7)-(11).
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Figure 7: Poloidal Flux Per Ampere Excitation in Circuits 1-3
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Figure 8: Poloidal Flux Per Ampere Excitation in Circuits 4-6
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Figure 9: Poloidal Flux Per Ampere Excitation in Circuits 7-9
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Figure 10: Poloidal Flux Per Ampere Excitation in Circuits 10-12
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Figure 11: Poloidal Flux Per Ampere Excitation in Circuits 13-14
For each coil circuit, the mean flux was next calculated for each poloidal location as a weighted average of the flux values on the five current stream function contours, using weighting factors [0.125 0.25 0.25 0.25 0.125].   Local torque densities per ampere of circuit current are then evaluated as the product of total TF current times the finite difference derivative with respect to the poloidal angle variable of the mean flux divided by 2.  The resulting profiles were multiplied respectively by the Table 2 maximum and minimum circuit currents to establish the ranges of torque densities versus poloidal locations.  Results appear in Figs.12-16.
Table 2:  Coil And Plasma Current Ranges Assumed for Torque Load Range Calculations
	COIL CIRCUIT NAME
	MINIMUM CURRENT (Amperes)
	MAXIMUM CURRENT (Amperes)

	    'PF1AU'
	-7000
	18000

	    'PF1BU'
	0
	13000

	    'PF1CU'
	0
	16000

	    'PF2U'
	-11000
	15000

	    'PF3U'
	-16000
	12000

	    'PF4'
	0
	16000

	    'PF5'
	0
	34000

	    'PF3L'
	-16000
	12000

	    'PF2L'
	-11000
	15000

	    'PF1CL'
	0
	16000

	    'PF1BL'
	0
	13000

	    'PF1AL'
	-7000
	18000

	    'OH'
	-24000
	24000

	    'PLASMA'
	0
	2000000
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Figure 12: Torque Density For Maximal Range of Currents in Circuits 1-3
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Figure 13: Torque Density For Maximal Range of Currents in Circuits 4-6
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Figure 14: Torque Density For Maximal Range of Currents in Circuits 7-9
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Figure 15: Torque Density For Maximal Range of Currents in Circuits 10-12
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Figure 16: Torque Density For Maximal Range of Currents in Circuits 13-14
TORSIONAL RESPONSE ALGORITHMS:  Overview
Although magnetic Lorenz torque loading on the TF coil system is completely determined by its electrical currents and magnetic fields, the torsion response of the system also reflects the mechanical propagation of torques and rotational deflections between different conductor assemblies and structural supports.  The internal torque state at any imaginary section cut through the TF conductor system is defined as the external torque that would need to be applied to one side of that cut to maintain its mechanical equilibrium.  This torque is oppositely directed for the two sides of the cut, so by convention the cut side in the direction of node numbering advancement around the TF loop is used herein.  Maximum shear stress in a section through elastic material is directly proportional to the internal torque state, so this quantity is of special interest. The complete torsion model predicts the distribution of internal torque along with associated small rotational deformations. That necessarily includes the structural support torques and the resulting torsional shear stresses.  The model includes, in addition to the distributed current-dependent Lorenz torque loads, the various torsion spring stiffnesses and interconnections that are relevant to rotational deformations. 
Since force and torque equilibrium necessarily exist throughout the entire TF system, it follows that the difference in internal torque states between any two sections through the TF conductors is equal to the total external torque acting on the TF conductor region between them.   Between the upper and lower leads of the TF centerstack there are no connections able to mechanically transmit torque, so within this region the profile of internal torque state vs location is equal to an additive torque constant plus the electromagnetic torque loading distribution described earlier in this memo.  The additive torque constant depends on torsion spring responses of the entire TF conductor and support system, while the electromagnetic torque loading distribution is a known function of currents and position only, independent of any torsion spring responses.
The model approach taken employs the toroidal membrane methods advanced in section VII of Peter Titus' 1999 paper, but extends it in certain ways.   For the centerstack portion of the TF system, torsion formulae for thick-walled tubular shafts are used instead of thin-walled approximations.  More significantly, discrete mechanical springs augmenting the toroidal membrane model are used to represent effects on the TF conductor system of additional external mechanical support structures and interconnections.  These springs include upper and lower umbrella lids together with their ties to the upper and lower umbrella structures, the upper and support rod connections between TF conductor outer legs and the vacuum vessel, the vacuum vessel itself, and the mechanical connections between the vacuum vessel through its gravity support legs to the floor and up through the pedestal pad supporting the TF centerstack.   These additional modeled springs are interconnected with each other outside the modeled toroidal membrane and are attached to the toroidal membrane at specific poloidal nodes.  Important node numbers in the toroidal membrane model are listed in Table 3 and their locations are depicted in Fig.17.
Table 3: Important Nodes in Toroidal Membrane Model of TF System Conductors

	Node Number
	R (m)
	Z (m)
	Importance

	1
	0.1942
	0
	Starting node in centerstack's middle

	363
	0.1942
	-2.6000
	Bottom of centerstack's straight section

	371
	0.2450
	-2.6067
	Bolts Attaching Stepped G10 Ring to Lower SplineLid

	383
	0.3312
	-2.6067
	End of Toroidally Continuous TF Lead Conductors

	513
	0.6923
	-2.4916
	TF Outer Leg's Lower End

	566
	1.0489
	-2.5165
	TF Outer Leg Clamped to Lower Umbrella Structure

	838
	2.3411
	-1.1489
	TF Outer Leg Clamp to Rods Connecting to Vacuum Vessel

	1163
	2.3411
	1.1489
	TF Outer Leg Clamp to Rods Connecting to Vacuum Vessel

	1435
	1.0489
	 2.5165
	TF Outer Leg Clamped to Upper Umbrella Structure

	1488
	0.6923
	2.4916
	TF Outer Leg's Upper End

	1618
	0.3312
	2.6067
	End of Toroidally Continuous TF Lead Conductors

	1630
	0.2450
	2.6067
	Bolts Attaching Stepped G10 Ring to Upper SplineLid

	1638
	0.1942
	2.6000
	Top of centerstack's straight section

	2000
	0.1942
	0
	Ending node in centerstack's middle
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Figure 17: Important Node Numbers in the TF Conductor's Toroidal Membrane Model

The constant-radius portion of the centerstack TF is represented by node numbers 1 through 363 which extend vertically from the centerstack's middle to its bottom of its constant-radius part, and by node numbers 1630 through 2000 which extend vertically from the top of the centerstack's constant-radius part to its middle, where it started at node 1. The centerstack's lower TF lead extensions are node numbers 364 through 383 and its upper TF lead extensions are node numbers 1618 through 1637.  The remaining nodes, 384 through 1617, represent the TF outer leg, the TF radial conductors, and the TF flex loops which connect to the centerstack's lead extensions.  Electrical connections between the lower and upper ends of each TF outer leg and the lower and upper TF radials are located respectively at node numbers 513 and 1488, each at r=0.6923 meters.

External interconnection paths modeled via discrete torsional springs include the following:
(1) From the upper TF outer legs at node 1435 clamped by a split aluminum block to the vacuum vessel's upper umbrella, to the upper umbrella's bolted lid, radially inwards though the lid to an upper inner bolt plate, then to an annular "crown" disk insulator locked by tight-fitting radial pins to the centerstack's upper leads at node 1630.  

(2) The vertical mirror image of (1) on the bottom, i.e., from the lower TF outer legs clamped to the vacuum vessel's lower umbrella at node 566, to its bolted lid, radially inwards to the lower inner bolt plate and insulating "crown" annulus, then to the centerstack's lower leads at node 371.
(3) From the TF outer legs just above horizontal mid-plane ports at node 1163, through rod connections to clevises mounted on the vacuum vessel. The vacuum vessel's upper dome continues this path to the upper umbrella legs then to TF conductor node 1435. 
(4) The vertical mirror image of (3) below the midplane, i.e., from the outer legs just below mid-plane ports at node 838, through connecting rods to aa clevis connected to the vacuum vessel, then through the vesse's lower dome, umbrella legs and Aluminum block clamp to node 566.

(5) From node 838 through lower clevis rods, through the vacuum vessel's cylindrical middle section to upper radius rods connections to node 1163.

(6) From the lower vacuum vessel through its mounting legs to the floor, then up through the centerstack's lower pedestal pad support, meeting the centerstack at  node 363.

Of primary interest in the investigations for which this torsion model may be applied is how shear stress is distributed within the CenterStack (i.e., the central bundle of turns) portion of the TF system, i.e., in the TF centerstack, since the interturn insulation there must withstand peak values of this stress.  Although this is primarily affected by the electromagnetic Lorenz torques directly acting on the TF centerstack, it is also partly dependent on the structures outside the centerstack since mechanical connections with the TF centerstack at its top and bottom allow mechanical transfer of torques there.  
TORSIONAL SPRING STIFFNESS  FORMULAE
For toroidally continuous portions of a TF conductor system resembling a thin membrane, it is appropriate to model the local rotational deflection due to torsion as follows:
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where  

s  represents the independent variable representing poloidal location in the toroidal membrane as a curvilinear distance measured in the membrane's poloidal (r,z) halfplane projection from an arbitrarily chosen reference location on the membrane,
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 represents the azimuthal (i.e., toroidal) rotation angle at poloidal location  s  due to torsion,
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 is the density of that torsional rotation deflection at location s, that is, the rate of deflection angle increase per unit change in poloidal location,
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  is the local internal torque state in the TF membrane conductor at poloidal location s,

G ,  is the shear modulus of the membrane material,

r(s), is the radius from the z axis of the membrane at poloidal location  s, and

t  , that is,  t(s), is the membrane's thickness at poloidal location  s.
Relating s to r allows Eq.(1) to be integrated, e.g., if a section of the toroidal membrane is planar so that ds in Eq.(1) equals dr, then integration over the resulting disk-annulus between inner and outer radii yields the following:
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(3a)

Another commonly occurring situation has the toroidal membrane in a non-planar configuration.  For those cases a small axisymmetric portion of the membrane can be approximated as having a straight line segment for its poloidal projection, extending from (r1,z1) to (r2,z2).  For example, this would apply to a thin approximately conical section taken though a vacuum vessel dome.  Integrating over the resulting frustrum of a cone results in the following:
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(3b)

In such portions of the TF conductor system where the thin toroidal membrane model is an appropriate approximation, the shear stress is constant over the thickness of each perpendicular section and varies according to the following formula:
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where (s)  the shear stress in the perpendicular section at location  s.  
In the NSTX CS upgrade's TF system the centerstack bundle of TF turns is sufficiently thick that it should not be modeled as a thin membrane.  It is more appropriate to instead model it as an elastic thick-walled tubular shaft in which shear stress in a section perpendicular to the axis varies linearly with radius within that section.  For the centerstack portion of the TF conductor system where the inner and outer radii of the TF are constant, the following formulae are used:
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where  J is the rotational moment of inertia of the centerstack TF cross section, 
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In this thick tubular shaft model the maximum shear stress in each section occurs at its outer radius and is given by the following:
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These formulae for thick-walled tubular shafts are also used for lead extension regions of the TF centerstack which extend from r=0.1942 meters out to r=0.3329 meters where toroidal continuity of the TF conductor's mechanical configuration ends.  In this 0.1942<r<0.3329 lead extension region the torsion formulae are less accurate since stress concentrations where radii abruptly change are not modeled.  

For the present toroidal membrane model of the TF conductor, the blue contour of Figs. 1 through 3 is used for all r>0.3329 outer locations where the thin membrane representation is used.  For r<0.3329 locations in the centerstack and its lead extensions where the thick-walled tubular shaft model is more appropriate, the blue contour is used to determine the  rOUTER value and the corresponding poloidal point on the red contour is used for rINNER.  Together these are used to calculate the local rotational moment of inertia, J, and also the peak shear stress. 
Torsional stiffness formulae based on simple first-principles mechanical models are accurate wherever the TF system is nominally continuous in the toroidal direction, which for the NSTX CSU includes all parts of the TF system at locations inboard from the flex loops where the radius is less than 0.3329 meters.  However, the same torsion formulae are also used herein to approximately model TF conductor deformation in outer regions where r>0.3329.  The TF conductors and their supporting structures are not toroidally continuous in outer regions but instead are broken up by air gaps.  The air gaps permit structures to deform in nonaxisymmetric ways not modeled by torsional stiffness formulae.  Thus, the present approximation neglecting toroidal air gaps must therefore artificially reduce the stiffness of its assumed toroidally continuous model in order to match its predictions to the actual nonaxisymmetric system.  Estimates and other information supplied by Mark Smith and by Tom Willard have been used to adjust these model parameter values.
ESTIMATION OF PARAMETER VALUES

The following section documents both my own ball-park estimates of some stiffness parameters and also torsional stiffness estimates developed by Mark Smith using a global 3D model, which I have preferentially adopted.
Centerstack:

The TF centerstack's new inner radius is 0.0512 m, and its new outer radius is 0.194238 m, not including its lead extensions.   The shear modulus of its copper is taken as G=48 GPa, i.e., 4.8e10 Pa.  Applying Eq.(3), its twist angle per unit length per unit torque is as follows:
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The total centerstack straight section length from node 1 through 363 and 1638 through 2000 is 5.200 m, so its torsional stiffness parameter is
KCS=1/[(9.3627587E-9 radian/N-m2)(5.200 m)] = 2.054E7 N-m/radian =

      = 3.176E6 inch-lbf/degree

Its reciprocal stiffness parameter is then
RCS= 1/(2.054E7 N-m/radian) =4.85853E-8 radians/N-m.

Its reciprocal stiffness parameter per element is as follows:
RCS/elt= (4.85853E-8 radians/N-m)/(724 elts) = 6.711e-11radians/N-m/elt
TF Centerstack Lead Extensions

The same formula is used for the lead extension portions of the TF centerstack, nodes 363 through 383 and 1618 through 1638.  Its inner radius is also taken as 0.0512 m, but its outer radius varies. Summing the resulting individual reciprocal stiffness terms (using MATLAB) results in

RLeads=  5.835E-10 radians/N-m
for upper lead extensions and the same again result separately for the lower lead extensions.

The average value per element of this constant is as follows:

RLeads/elt=  (5.835E-10 radians/N-m)/(19 elts) = 3.071E-11 radians/N-m/elt

The equivalent spring stiffness constant for the lead extensions is the reciprocal, i.e., 

KLeads=1/(5.835E-010 radians/N-m=   1.71E9 N-m/radian 

The upper lead extension is included with the straight part of the centerstack, so

r1=3.87007e-010+4.85853E-8= 4.89723e-8 radians per newton-meter

Insulating Annular "Crown" pinned to leads, bolting plate
I do not have a proper estimate for the stiffness of these assemblies, but will assume that the reciprocal stiffness of each (top and bottom) is about 

Rcrown=5E-9 radian/N-m
Outer Umbrella and Lid:  

I had earlier estimated a reciprocal stiffness for the portion of the umbrella between TF clamps and lid as follows:
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2.508E-11 radians/N-m.

At that time the lid design was envisioned as a stainless steel disk-annulus, assumed to be 1" thick.  Its outer and inner radii are assumed to be respectively 1.047752 m and 15.375"/2= 0.1953 m, which resulted in a lid reciprocal stiffness of

[image: image32.wmf](

)

(

)

(

)

(

)

=

÷

÷

ø

ö

ç

ç

è

æ

-

=

÷

÷

ø

ö

ç

ç

è

æ

-

=

=

2

2

2

2

0477521

.

1

1

1953

.

0

1

10

72

.

7

0254

.

0

4

1

1

1

4

1

E

r

r

tG

T

R

o

i

p

p

f


=1.02702e-009  radians per Newton-meter

Using those values as ballpark estimates, then the net reciprocal stiffness from TF coil clamp to crown interface would have been 
2.508e011+1.02702e-009  = 1.052E-9 radian/N-m
A better estimate of the stiffness via this path was provided by Mark Smith by fitting a global 3D model, as copied into the following text box.  The reciprocal stiffness derived from his data is

Rumbrella+lid=3.338E-9 radians/N-m
[image: image1.wmf]ú

û

ù

ê

ë

é

-

+

ú

û

ù

ê

ë

é

-

+

ú

û

ù

ê

ë

é

-

+

ú

û

ù

ê

ë

é

-

+

ú

û

ù

ê

ë

é

-

=

ú

û

ù

ê

ë

é

kA

 

1

I

I

16497

kA

 

1

I

I

13191

   

          

kA

 

1

I

I

8

.

4293

kA

 

1

I

I

0

.

3692

   

          

kA

 

1

I

I

9

.

3519

m

-

N

 

1

Torque

 

OuterLeg

 

System

 

TF

Net 

PF3L

PF3U

PF2L

PF2U

PF1CL

PF1CU

PF1BL

PF1BU

PF1AL

PF1AU



Inner Umbrella

Each umbrella is a nominally cylindrical stainless steel (G=77.2 GPa) structure of radius r=1.0477521 m, thickness t=1"=0.0254 m, and height from base to the middle of the cutouts for TF outer legs is 32.12"=0.8158 m.  Eq.(3) could be used to estimate its stiffness parameter if it had no cutouts.  However, it has not only the cutouts for TF outer legs but also ten arch-shaped cutouts near its base.  If its thickness were reduced by 67% from 1" to t=0.33"=0.00847 m as a ballpark "guestimate" to match actual nonaxisymmetric deflections under torsion loading .the stiffness parameter would become the following:
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=1.727E-010 radians per newton-meter
A better estimate of the stiffness of this path was provided by Mark Smith by fitting a global 3D model, as copied into the following text box.  It is equivalent to 

RInnerUmbrela=4.44E-9 radian/N-m
[image: image190.jpg]
Vacuum Vessel Division
Connecctions to the TF outer legs above and below the horizontal midplane were identified as TF conductor node numbers 838 and 1163, located at (r,z)=(2.3411, ±1.1489) m.  These connections go to the vacuum vessel, meeting it at locations closer to the midplane.  For the present analysis they are assumed to meet the vacuum vessel at the interface between the vacuum vessel's cylindrical midsection and its upper or lower domes, i.e., at (r,z)=(1.74, 1.00) m.  Therefore, for the calculation of spring stiffnesses, one value is for the cylindrical central portion of the vacuum vessel and another is for a vacuum vessel dome connected in series with the portion of the umbrella between the vacuum vessel and thee TF outer leg's aluminum block clamp.

Central cylindrical section of the vacuum vessel:

The vacuum vessel is made of stainless steel (shear modulus G=77.2 GPa) of thickness t=0.625"= t=0.01875 m.  The radius of the vacuum vessel's central section is about 1.705 m and its height is 2.00 m.   Therefore, Eq.(3) could be used for a rough reciprocal stiffness estimate, 
RVV-middle=4.4367E-11 radians/ N-m.  For the effect of port cutouts it was decided to reduce the assumed cylindrical membrane thickness by 50%, to t=0.009375.  This would increase the reciprocal stiffness parameter to   RVV-middle=8.87E-11 radians/ N-m.
A better estimate of the stiffness of this path was provided by Mark Smith by fitting a global 3D model, as copied into the following text box.  It is equivalent to 


RVV-middle=5.634-10 radian/N-m
[image: image191.jpg]
Vacuum vessel dome

Vacuum vessel drawings identified (r.z) coordinates of the upper dome from the dome's mouth to its interface with the vacuum vessel's cylindrical section, as listed in the following table.

Table 4:  Vacuum Vessel Dome Coordinates

	Point #
	r (m)
	z (m)

	1
	0.6121
	1.7500

	2
	0.7442
	1.7170

	3
	1.1455
	1.5545

	4
	1.5392
	1.3106

	5
	1.6612
	1.1735

	6
	1.7068
	1.0033


The total rotation angle per unit torque for the five unbroken conical frustrum regions bounded by the points is then estimated as follows:
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= 1.41805e-010 radians per newton-meter.  If one arbitrarily reduces the thickness by 50% to account for port cutouts, this leads to the following guestimate for the reciprocal stiffness of each of the domes:

        Rdome=2.8361E-10 radian/ N-m
A better estimate of the stiffness of this path was provided by Mark Smith by fitting a global 3D model, as copied into the following text box.  It is equivalent to 

        Rdome=1.72E-10 radian/ N-m
[image: image192.jpg]
Vacuum Vessel Connections to TF Outer Legs

A rough stiffness estimate was made based on assumed 1.5"=0.0381 m diameter solid steel cylindrical rod attached to the vacuum vessel through pin connections at clevis attachments midway between TF outer legs.  Coordinates of these connection points are (R,Z)=(1.7068, ±1.00) m, while the coordinates of the TF out legs where they attach to the tangential rods are (R,Z)=(2.3411, ±1.1489) m.  Taking into account the 12-fold symmetry and the geometric angles, the resulting reciprocal stiffness parameter estimate is as follows:

RClevisRods=1.22e-010 radian/N-m
Vacuum Vessel Legs and Pedestal Support for TF Centerstack

Without nonaxisymmetric analyses it is not possible to estimate the rotational stiffness of the torque path through vacuum vessel support legs, floor, and TF centerstack pedestal support.  However, Mark Smith has provided such estimates by fitting a nonaxisymmetric global 3D model, as copied into the following two text boxes.  The equivalent reciprocal stiffness parameter for the VV support legs is

RLegs=3.72E-8 radian/N-m
[image: image193.jpg]
The equivalent reciprocal stiffness parameter for the pedestal pad supporting the centerstack is:


RPed=2.17E-8 radian/N-m

[image: image194.jpg]

TF Conductor Portions Lacking Structural Continuity in Toroidal Direction

The remaining portions of the system are TF conductors which are interspersed with toroidal air gaps lacking any structural rigidity.  This situation exists everywhere that the TF conductors have major radius locations exceeding the threshold value, i.e., for R>0.3329 m.  Although at certain locations the TF conductors are clamped to other structures, such clamping is not the issue here since those other structures and their TF conductor attachment points are expressly modeled as external springs.  Thus, any torsional stiffness parameters to be assigned to toroidally discontiuous portions of TF conductors must be chosen to match the TF conductors' nonaxisymmetric beam-like toroidal deflection behaviors to the axisymmetric model.  
Recall that for a straight beam, the deflection distance, y,  is governed by the following fourth order system of differential equations:
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where 

s is the distance along the straight beam,

q is the perpendicular running load force per unit distance,

V is the internal section shear force,

M is the internal section bending moment, 

q is the deflection angle 

yf is the deflection distance due to flexure

ys is the deflection distance due to shear

E is the elastic modulus

G is the shear modulus

I is the cross section's moment of inertia with respect to the loading direction

A is the cross section's area

Note that the torsion system of equations matches the shear part of the beam deflection system but has no way of modeling beam flexure.  Thus, there is no first-principles approach to matching the models.  As an intuitive example of this mismatch, a continuous toroidal membrane representing the TF outer legs would develop nonzero internal torque if its top were rotated by, say, 0.001 radians with respect to its bottom, but the collection of  12 TF outer legs could sustain such a relative rotation without elastically deforming them (to first order), i.e., with twelve different small rigid body tilting motions of the separate outer legs.  

Thus, the best that can be done is to make a very approximate, order-of-magnitude torsional stiffness estimate for the outer TF conductor, as a "kludge".  To this end, Tom Willard supplied ANSYS calculated results for the out-of-plane deflection of an isolated TF Outer Leg under defined loading conditions.  The model imposed cantilever restraints on the conductor at the upper and lower locations where the actual outer leg is clamped to the umbrellas by aluminum blocks (i.e., the torsion model's nodes 566 and 1435)  It applied 1000 lbf=4454.5 N  out-of-plane load forces to the outer legs at the locations where each acual outer leg will be connected to vacuum vessel clevises via rods (i.e., the torsion model's nodes 838 and 1163).  Maximum calculated OOP deflection was 0.073 inches with a single OOP force applied and 0.140 inches=3.56 mm with both OOP forces applied in the same direction.  The torsion model's stiffness value is then set by the second of these results, based on the deflection of the top half only.   A torque of  

T=(12 outer legs)(F=4454.5 N)(R=2.3411 m) = 125,142 N-m
is predicted by ANSYS to cause the TF conductor portion between the upper umbrella's clamp (node 1435) and the clevis rod clamp (node 1163) to rotate through and angle of


= (0.00356 m)/(2.3411 m) =  0.0015189 radians
The corresponding reciprocal stiffness value is then


R1163:1435 =   /T = (0.0015189 radians)/(125,142 N-m) = 

=1.2138e-008 radian/N-m
In order to assign a consistent stiffness to other portions of the TF outer legs, a single-element value is first obtained by dividing the above result by the 1435-1163+1= 273 elements to obtain


RTFOL/elt=R1163:1435 /(1435-1163+1 elts) = 4.45E-11 radian/N-m/elt
This per element value is then used to generate reciprocal stiffness values for the other portions of the TF outer legs.  For the portion between lower and upper rod attachments to clevises, 

R838:1163=(1163-838+1)RTFOL-node = 1.45E-8 radian/N-m
For the Outer leg TF portion inboard of each umbrella clamp, including the flex straps for which no better "kludge" estimate of torsional stiffness has been derived, the reciprocal stiffness values are as follows:

R1435:1618= R383:566== (184)RTFOL-node = 5.26E-8 radian/N-m

THE EQUIVALENT ELECTRICAL MODEL
This analysis uses an analogy between the torsional mechanical system and a hypothetical electrical network.  The angular twist of an axisymmetic portion of the TF system is analogous to the voltage developed across a length of resistive conductor in the hypothetical analogous electrical network, and the internal torque developed in that axisymmetric section is analogous to the current flowing through the analogous resistor.  Torsional spring stiffnesses, expressed in units of torque per unit angular deflection, are analogous to conductances (i.e., reciprocal resistances) in the hypothetical electrical network.  

Since electromagnetic torque loading on the TF centerstack is not spatially umiform, the TF centerstack can best be modeled as a series-connected sequence of many small torsion springs.  The nodes between the resistors represent a sequence of physical locations within the centerstack.  The nonuniform distributed torque loading is then modeled by assigning the Lorenz torque increment for each region between two adjacent nodes to one of those two nodes.  (Little error is introduced by this asymmetrical assignment if nodes are closely spaced.)  As developed in the Appendix, this torque is equal to the product of total TF threading current,  
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An electrical analogy shown in Fig.18a is a series connected string of resistors interleaved with current sources that inject increments of electrical current from a common reference node.  
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Figure 18a: Electrical Analogy of Series-Connected Torsion Springs And External Torques

Currents 
[image: image39.wmf]j
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flowing through the Fig.18a resistors represent the internal torque state at different vertical locations in the TF centerstack.  Resistor currents can thus differ from each other according to:
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where 
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 is an injected current.  Since the injected currents, ij , represent the incremental torques, Tj , the electrical analogy model's resistor currents are related to actual poloidal fluxes as follows:
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where C is any fixed constant value.  
This Fig18a model can be continued beyond the TF centerstack through the outer parts of the TF conductor system where mechanical supports interconnecting portions of the system must also be modeled.  The fact that the total net Lorenz torque on the entire TF system is necessarily zero translates in the full TF system model's analogous electrical network into the net current from the common reference node being zero.  This allows the Fig.18b alternative equivalent circuit model to be used instead for the analogy.
[image: image43.emf]
Figure 18b: Alternative Analogy of Series-Connected Torsion Springs And External Torques

In Fig.18b, the current in each external current source is assigned as:
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where j is the node number of the location at one of the current source's ends.  With this assignment, the current in each of the model's resistors is related to actual poloidal flux as  
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where C si the common constant value of current flowing between series blocks of Fig.18b.  This also clearly matches the resistor current in the Fig.18a model.  
Fig.19 depicts the electrical analogy of the full toroidal membrane model of the TF conductor, which includes 1999 copies of the basic blocks of Fig.18b, all connected in series to form a single loop.  Fig.19 shows only 25 of the 1999 copies, but the rest are implied.   
The current in each Fig.19 primary resistor representing the TF centerstack equals the current in its parallel current source plus the loop current in the ccw direction.  Analogously, the internal torque state at any location is the applied differential Lorenz torque plus the torque mechanically transferred in.  Other parts of Fig.19 are also interconnected through external resistors lacking any parallel current sources (i.e., lacking any applied EM torques).  Figure 19 depicts these external paths with bold symbols, using resistance numberings keyed to the previously numbered external paths for mechanical torques.
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            Figure 19: Electrical Analogy TF Torsional Model for NSTX CSU

The external resistors of Fig.19 are identified as follows.  R(1) and R(2) represent series mechanical connection paths from respectively upper and lower aluminum block TF conductor clamps through the upper or lower umbrella to the umbrella lid and its radial connection to the insulating crown bolted to the centerstack's TF leads.  R(3A) represents the upper system of rods connecting between TF outer leg clamps and clevis attachments to the vacuum vessel.  R3B represents the series combination of the upper dome portion of the vacuum vessel above the upper clevis attachments,  the upper umbrella mounting, and the upper umbrella up to where aluminum block TF conductor clamps are attached.   R(4A) and R(4B) represent the lower mirror image of R(3A) and R(3B).  R(5), together with R(3A) and R(4A), implement the previously listed interconnection path (5).   R(6A) in series with R(6B) together model path (6) which transmits torque through the vacuum vessel's legs to the floor and then up through the pedestal pad to the centerstack's bottom.  In this model, the torque through path (6) is transmitted into the inner part of the centerstack's bottom without going through the lower lead extensions.
The following table summarizes electrical analogy model resistances from the previous section.

Table 5: Electrical Analogy Model Resistance Values

	Parameter
	Comments
	Analogous Resistance Value (radian/N-m)

	R(1)
	Rcrown+Rumbrella+lid
	8.38E-9

	R(2)
	Rcrown+Rumbrella+lid
	8.38E-9

	R(3B)
	RInnerUmbrela+Rdome
	4.962E-9

	R(4B)
	RInnerUmbrela+Rdome
	4.962E-9

	R(3A)
	RClevisRods
	1.22E-10

	R(4A)
	RClevisRods
	1.22E-10

	R(5)
	RVV-middle 
	5.634-10 

	R(6A)
	RPed
	2.17E-8 

	R(6B)
	RLegs
	3.72E-8 

	R1638:2000&1:363
	RCS
	4.86E-8 

	R363:383
	RLeads
	5.835E-10 

	R1618:1638 
	RLeads
	5.835E-10 

	R383:566
	
	5.26E-8

	R1435:1618 
	
	5.26E-8

	R566:838
	
	1.214E-8 

	R1163:1435 
	
	1.214E-8 

	R838:1163
	
	1.45E-8 


SOLUTION OF NSTX CSU ELECTRICAL ANALOGY TF TORSIONAL MODEL

In order to calculate the shear stress profile in the TF centerstack it is necessary to first determine the internal torque state as a function of location, T(sj).  In terms of the Fig.19 electrical analogy model this is equivalent to calculating resistor currents in each of the Fig.18b-style blocks representing the centerstack, i.e., between nodes 1 and 371 and between nodes 1630 and 2000 (a.k.a. 1).  However, each such resistor current is simply the sum of the constant value of current passing between all of the centerstack's Fig.18b-type blocks and the known poloidal-flux-dependent current in its parallel current source.    Thus, only two constant current values need to be determined to evaluate centerstack shear stress profiles.  One current value is needed for nodes 1630 through 2000 and 1 through363, while the other is needed for nodes 363 through 371 which represent the lower lead extensions.  Furthermore, inspection of Fig.19 shows that the entire TF system model could be similarly treated by solving for a total of seven (7) such "constant" values of mesh currents.
Determining terminal currents is simplified by equivalent-circuit reductions.  A Thevenin equivalent of the basic block in the Fig.18b circuit employing an ideal series voltage source is shown in Fig.20.  The voltage of this source is the product of the Fig.18b block's source current and resistance, i.e., 
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and its resistance is equal to Rj, the same as in the  Fig.18b block.  It has the same external terminal node voltage/current characteristics as Fig 18b, but its internal resistor current does not match the current through Fig.18's resistor.  

                               [image: image48.emf]Node jNode j+1Vj


Figure 20: Thevenin Equivalent of the Fig.21 Circuit, Using A Voltage Source

Converting from Fig.18b-type blocks to the Fig.20 form allows many series-connected blocks to be merged into a single block by adding their resistances and adding their source voltages.  Applying this substitution to Fig. 19 and combining blocks results in the Fig.21 circuit, which for mesh currents is equivalent to the Fig.19 circuit but easier to calculate.  After solving for them, they are substituted into the Fig.19 circuit in order to calculate each resistor current there which is analogous and proportional to the internal torque state of the corresponding part of the mechanical system.  
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Figure 21: Equivalent Electrical Analogy TF Torsional Model for NSTX CSU

To help solve the Fig.21 circuit it is appropriate to first combine series elements and assign more compact names to designate  the resistances,  voltage source parameters, and distinct mesh currents in the circuit.  This is done in the following diagram which uses 7 mesh loops.  Note that the mesh loop carrying the current, i1, is the large loop that contains all seven voltage sources.
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Figure 22:  Simplified equivalent circuit of electrical analogy torsion model
The correspondences with symbols of earlier diagrams and parameter values are as follows:
r1=R(1:363)+R(1638:2000) +R(1618:1638)
= 4.86E-8 + 5.835E-10 = 4.92E-8 radian/N-m
r2=R(363:383)= 5.835E-10 radian/N-m

r3=R(383:566) = 5.26E-8 radian/N-m

r4=R(566:838)= 1.214E-8  radian/N-m

r5=R(838:1163) = 1.45E-8  radian/N-m

r6=R(1163:1435) = 1.214E-8  radian/N-m

r7=R(1435:1618)= 5.26E-8 radian/N-m
r8=R(2) = 8.38E-9 radian/N-m

r9=R(6A)+R(6B) = 2.17E-8 +3.72E-8  = 5.89E-8 radian/N-m

r10 = R(4B) = 4.61E-9 radian/N-m

r11=R(4A)= 1.22E-10 radian/N-m

r12 = R(5) = 5.634-10 radian/N-m

r13 = R(3A) = 1.22E-10 radian/N-m

r14 = R(3B) = 4.61E-9 radian/N-m

r15 = R(1) = 8.38E-9 radian/N-m 

The analogous voltage sources result from the series connection of a sequence of elements each containing its own voltage source.  When a series sequence of such elements have common torsional  "resistance" values which multiply their equivalent current sources, these common resistances can be factored out of the voltage sums yielding a sum over the equivalent sequence of analog current sources.  However, since each analog current source is proportional to a difference of successive poloidal flux values, a simplifying cancelation occurs which eliminates poloidal flux at the intermediate nodes results.  
In the reciprocal stiffnesses calculated for the TF conductors, constant elemental resistance values result for the constant-radius portions of the TF center-stack.  A second constant  value per element has been selected for the TF outer leg conductor, extending inwards to the flex straps.  The lead extensions were not modeled as having such a constant value but will nevertheless be approximated with their constant average value in order to simplify calculations.  
The three constant resistance values per element are as follows.

RCS/elt= 6.7e-11radians/N-m/elt                  = RCSe
RLeads/elt=3.071E-11 radians/N-m/elt          =RLe
RTFOL/elt=4.45E-11 radian/N-m/elt             =RTFOLe
Then the analogy model's  ideal voltage sources can be expressed as follows
v1=V(1:363)+V1618:1638)+V(1638:2000)=
    =((1638-363)*RCS/elt+(1618-1638)*RLeads/elt)*NTFITF/2
v2= V(363:383)  = (363-383)*RLeads/elt*NTFITF/2
v3=V(383:566)  =  (383-566)*RTFOL/elt*NTFITF/2
v4= V(566:838)= (566-838)*RTFOL/elt*NTFITF/2
v5=V(838:1163)  = (838-1163)*RTFOL/elt*NTFITF/2
v6=V(1163:1435)  = (1163-1435)*RTFOL/elt*NTFITF/2
v7=V(1435:1618) = (1435-1618)*RTFOL/elt*NTFITF/2
Using these variables the seven mesh equations to be solved for mesh currents are as follows:
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These equations can be expressed more compactly in vector-matrix form , as follows:
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where
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ANALYSIIS RESULTS

For the stiffness parameter values chosen herein and for each of 97 coil current combination cases including the 96 plasma equilibria (specified previously by J. Menard) and a single OH-only +24 kA precharge case, the model's solution was obtained via MATLAB.  Once the fixed currents i1 and i2 for a parameter case were numerically found the were used to determine the corresponding internal torque and shear stress profile in the TF centerstack.  The resulting shear stress profiles are plotted in Appendix 2.  
The maximum peak absolute shear stress over all 97 cases examined was 25.18 MPa, but many cases had almost this large a value of peak absolute shear stress.  Inspection of the profiles shows that the OH coil's effect on peak shear stress is far stronger than the combined effects of the other PF coils or the plasma.  All cases with peak shear stresses near 25 MPa had the absolute value of OH current at 24 kA, and all cases with smaller absolute values of OH current had correspondingly smaller values of peak shear stress.
APPENDIX 1
Out-Of-Plane (OOP) Torque Algorithm Exposition
Derivation of Torsion Load Formulae for Out-Of-Plane (OOP) forces on Toroidal Field Coils

In general, the total moment (i.e., torque) vector of electromagnetic forces about an origin is the volume integral of the following differential:
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where 
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is the position vector of a differential volume, dV , 
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 is the current density vector and 
[image: image58.wmf]B

r

 is the magnetic field vector.  For a toroidal field coil system it is appropriate to use a cylindrical coordinate system. (r,,z),  in which the vertically oriented  z axis is the central axis of symmetry which includes the origin.  To analyze OOP forces in a near-axisymmetric system it is sufficient  to consider only current densities and magnetic fields lying within the local poloidal plane and depending only on the position vector within that same plane.  Thus, these vectors can be rewritten as follows:


[image: image59.wmf]z

B

r

B

B

z

J

r

J

J

z

z

r

r

r

z

r

z

r

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

+

º

+

º

+

º

r

r

r


(A2)
where  
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  are unit vectors aligned with the local coordinate system directions.

The  volume differential in cylindrical coordinates becomes:
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Substituting and combining terms to simplify the result, the differential moment vector is rewritten as follows in Eq. (A4)
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(A4)
When integrating Eq.(A4) over the full range of toroidal angle, 0≤,  the radial unit vector term, 
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, cancels itself out for rotationally symmetric poloidal magnetic fields and TF coil current densities.  The remaining nonzero part of the integral is stated in Eq.(A5).
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(A5)
In this last form, the double integral is taken over the (r,z) poloidal half-plane.  However, current density components are zero everywhere outside the TF coils so the integration region only needs to include the (r,z) projection of TF coil conductors.  

An important simplification results from changing over to stream function variables.  For axisymmetric systems the poloidal flux stream function, (r,z),  is the total magnetic flux enclosed by the circle centered on and normal to the z axis which passes through (r,z).  Poloidal magnetic flux is related to the poloidal magnetic field as stated by Eq.(A6).
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so 
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(A7)
We similarly define the toroidal field coil current stream function, I(r,z), as the total TF coil current enclosed by the circle about the z axis passing through (r,z).  This current stream function is related to the TF current density as stated by Eq.(A8).
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(A8)
so
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Substituting these stream functions of Eqs.(A7) and (A9) into the previous integral yields Eq.(A10a).
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(A10a)

As stated previously, the radially oriented term cancels out while integrating over toroidal angle, leaving Eq.(A10b) as the result.
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(A10b)
This is a particularly simple and compact formula involving the integral of the cross product of gradients of two scalar functions.  The poloidal magnetic flux function can be directly obtained to any desired accuracy by use of Greens functions involving the standard elliptic integral functions, K() and E(), and the current stream function can be approximated using the projected outline of TF conductors.  Furthermore, the integral itself can be approximated from these data using very simple algorithms.
Limit for the case of a slender TF conductor

Vector identities applied to Eq.(A10b) imply that
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(A11)
Here, the integration is over the area of the poloidal projection of the TF conductor segment whose net torque is to be calculated.   If the conductor's projection is slender with a small width, w, we can change the element of poloidal area from dA=drdz to dA=dldw where l represents distance along the conductor's length.  Assuming constant current density in the conductor the gradient vector of the current stream function, 
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, has a magnitude equal to the total TF urrent divided by the width, 
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 , and the gradient vector 's direction is perpendicular to the local TF current streamline, pointing towards the coil's bore.  It follows that 
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 has the same magnitude but is pointed in the same direction as the flowing TF current,  a direction denoted here by the unit vector, 
[image: image76.wmf]n

ˆ

.  With these substitutions, the net torque over a slender TF conductor segment extending from point A to point B can be rewritten as in Eq.(A12).
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(A12)
However, this last integral expression in Eq.(A12) may be immediately recognized as the line integral of the gradient of a scalar function, so it has the following Eq.(A13)exact solution:
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(A13)
Thus, the general formula of Eq.(A12), when interpreted for slender conductors, asserts that the net torque over a poloidal length of TF conductor is simply the product of the difference between the poloidal flux values at the conductor's ends, divided by 2, then multiplied by the TF current. 

Derivation of Approximation For Wider TF Conductors   
[image: image195.jpg]Consider a triangular region in the poloidal half-plane, ABC,  on which the exact scalar functions I(r,z)  and (r,z) are to be linearly approximated by 
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using function values that are exact at the triangle's three corners.  The linear models are as follows:
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(A14)
where 
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 are linear model coefficient parameters that have constant values throughout the triangle.  The requirement to match the approximation to actual function values at triangle corners yields the following matrix equations, where  
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 are the coordinates of the triangle's corners:
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(A15)
[image: image196.jpg]

(A16)
These can be readily solved in closed form to find the appropriate coefficient parameter values.  For the partial derivative coefficient parameters the solutions are as follows:
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(A17)
Using this approximation the previous integrand becomes:
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(A18)
Note that as a result of assuming a linear model over the triangle, this approximation gives a constant value of the integrand over the triangle.  Thus, the integral over the triangle is simply this integrand's constant value times the triangle's area, which, assuming the ABC point sequence is counterclockwise, is:
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(A19)
This cancels all (r,z) coordinates, so the integral over the triangle becomes as stated in Eq.(A20).
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(A20)
This formula can be applied to an adjacent bordering triangle, ACD, by changing indices as in Eq.(A21).
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The two triangles together form a quadrilateral, ABCD, so the integral over the entire quadrilateral is the sum of the two triangle integrals:
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(A22)
The quadrilateral, ABCD, could alternatively be decomposed in a different way into two triangles, i.e., into triangle ABD and triangle BCD.  Although the linear coefficient parameter sets that would apply for these triangles would be different from the above, the final resulting formula for the moment integral over the quadrilateral ABCD turns out to be identically the same!   [image: image198.png]
Note that in the important special case wherein the quadrilateral's corner points are located on two TF current stream function contour lines, it follows  that IA=ID  and IB=IC .  In that case the approximate  formula for net torque in the quadrilateral region of the poloidal half-plane becomes simplified to Eq.(A23).
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This is the simple average of the differences between per radian poloidal magnetic fluxes at the two ends of each of the two bounding current stream function contours, multiplied by the TF current enclosed between those two current stream function contours.

[image: image199.png]Thus, the torsional OOP loading of the TF coil system can be evaluated by taking simple sums and differences of poloidal flux evaluated at points located on TF current streamlines.  
A Higher Accuracy Numerical Approximation 
In the present case of this memo's calculations of net torque in the NSTX CSU TF conductor due to poloidal field interactions with TF current, five TF current streamlines have been chosen and their separation in terms of contour levels is the total TF current divided by four.  The adjacent diagram illustrates the five contours and flux evaluation points on those contours for two adjacent poloidal angle locations.  Applying the torque formula to each of the for quadrilaterals having the ten indicated locations as their corners, the sum of the net torque is as stated in Eq.(A24).
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(A24)

Thus, in the sum over one poloidal interval we must premultiply the column vector of five local flux values by the row vector, [1 2 2 2 1], then divide by 16 before subtracting from the corresponding result for the other poloidal location.  
Note that if all five flux values at one poloidal location were identical to each other the result would be that single value divided by  2   
Note also that there is no benefit from repeating this summation procedure over many poloidal intervals in a TF conductor segment and summing their results, since the quantities evaluated at all intermediate poloidal locations would identically cancel each other out in taking the poloidal intervals sum.  It is mathematically equivalent to directly subtract the quantities calculated on the five contours at the TF conductor segment's ends.  
APPENDIX 2

Torsion Analysis Results

Shear stress stress profiles were calculated for the 96 plasma equilibrium cases previously defined by J. Menard and for a single +24 kA OH precharge case.  The different shear profiles are all graphed on the following pages.  Peak shear stress values are collected in the following table for these cases.  The maximum absolute shear was -25.184 MPa, observed for equilibrium case #1 and almost reached again in equilibrium case #16.  
The table and plots show shear stress is mostly due to OH.   PF coils and plasma contribute little.
Table A2: TF Centerstack MAx Absolute Shear Stress ; Precharge and Plasma Cases

	Case#

-24 kA OH
	Peak Shear MPa
	Case#
0 kA OH
	Peak Shear MPa
	Case#
13 kA OH
	Peak Shear MPa
	Case
24 kA OH
	Peak Shear MPa

	
	
	
	
	
	
	Precharge
	24.45

	1
	-25.184
	2
	2.0659
	3
	15.421
	
	

	4
	-23.862
	5
	2.0733
	6
	15.428
	
	

	7
	-23.422
	8
	2.3851
	9
	15.528
	
	

	10
	-23.272
	11
	2.7436
	12
	16.023
	
	

	13
	-23.248
	14
	2.8179
	15
	16.112
	
	

	16
	-25.184
	17
	2.0659
	18
	15.421
	
	

	19
	-23.104
	20
	3.5128
	21
	16.814
	
	

	22
	-23.152
	23
	3.2479
	24
	16.517
	
	

	25
	-23.216
	26
	2.9997
	27
	16.255
	
	

	28
	-23.316
	29
	2.8479
	30
	15.994
	
	

	31
	-23.442
	32
	3.0592
	33
	16.015
	
	

	34
	-23.133
	35
	6.4557
	36
	19.960
	
	

	37
	-23.096
	38
	6.1462
	39
	19.669
	
	

	40
	-23.124
	41
	5.7567
	42
	19.271
	
	

	43
	-23.196
	44
	5.0989
	45
	18.688
	
	

	46
	-23.278
	47
	4.4391
	38
	18.096
	
	

	49
	-22.982
	50
	6.6023
	51
	20.108
	
	

	52
	-22.989
	53
	6.2348
	54
	19.786
	
	

	55
	-23.046
	56
	5.7607
	57
	19.304
	
	

	58
	-23.132
	59
	5.1357
	60
	18.715
	
	

	61
	-23.242
	62
	4.3503
	63
	17.968
	
	

	64
	-23.289
	65
	3.176
	66
	16.591
	
	

	67
	-23.295
	68
	3.1136
	69
	16.529
	
	

	70
	-23.284
	71
	3.0578
	72
	16.497
	
	

	73
	-23.245
	74
	3.1616
	75
	16.616
	
	

	76
	-23.206
	77
	3.3256
	78
	16.783
	
	

	79
	-23.149
	80
	3.5554
	81
	17.019
	
	

	82
	-23.045
	83
	4.8323
	84
	18.114
	
	

	85
	-23.117
	86
	3.9819
	87
	17.246
	
	

	88
	-23.187
	89
	3.3987
	90
	16.663
	
	

	91
	-23.264
	92
	2.9525
	93
	16.203
	
	

	94
	-23.349
	95
	2.5611
	96
	15.802
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TF Centerstack Shear Stress Profile for Equilibrium Case # 1
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TF Centerstack Shear Stress Profile for Equilibrium Case # 4
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TF Centerstack Shear Stress Profile for Equilibrium Case # 2


[image: image96.emf]-20-1001020

-3

-2

-1

0

1

2

3

Vertical Position (Z) in TF CenterStack (meters)

 Shear Stress (MPa)at TF CenterStack Outer Edge 

TF Centerstack Shear Stress Profile for Equilibrium Case # 5
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TF Centerstack Shear Stress Profile for Equilibrium Case # 3
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TF Centerstack Shear Stress Profile for Equilibrium Case # 6
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TF Centerstack Shear Stress Profile for Equilibrium Case # 7
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TF Centerstack Shear Stress Profile for Equilibrium Case # 10
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TF Centerstack Shear Stress Profile for Equilibrium Case # 8
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TF Centerstack Shear Stress Profile for Equilibrium Case # 11
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TF Centerstack Shear Stress Profile for Equilibrium Case # 9
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TF Centerstack Shear Stress Profile for Equilibrium Case # 12
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TF Centerstack Shear Stress Profile for Equilibrium Case # 13
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TF Centerstack Shear Stress Profile for Equilibrium Case # 16
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TF Centerstack Shear Stress Profile for Equilibrium Case # 14
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TF Centerstack Shear Stress Profile for Equilibrium Case # 17
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TF Centerstack Shear Stress Profile for Equilibrium Case # 15
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TF Centerstack Shear Stress Profile for Equilibrium Case # 18
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TF Centerstack Shear Stress Profile for Equilibrium Case # 19
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TF Centerstack Shear Stress Profile for Equilibrium Case # 22
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TF Centerstack Shear Stress Profile for Equilibrium Case # 20
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TF Centerstack Shear Stress Profile for Equilibrium Case # 23
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TF Centerstack Shear Stress Profile for Equilibrium Case # 21
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TF Centerstack Shear Stress Profile for Equilibrium Case # 24
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TF Centerstack Shear Stress Profile for Equilibrium Case # 25
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TF Centerstack Shear Stress Profile for Equilibrium Case # 28
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TF Centerstack Shear Stress Profile for Equilibrium Case # 26
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TF Centerstack Shear Stress Profile for Equilibrium Case # 29
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TF Centerstack Shear Stress Profile for Equilibrium Case # 27


[image: image122.emf]-20-1001020

-3

-2

-1

0

1

2

3

Vertical Position (Z) in TF CenterStack (meters)

 Shear Stress (MPa)at TF CenterStack Outer Edge 

TF Centerstack Shear Stress Profile for Equilibrium Case # 30
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TF Centerstack Shear Stress Profile for Equilibrium Case # 31
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TF Centerstack Shear Stress Profile for Equilibrium Case # 34
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TF Centerstack Shear Stress Profile for Equilibrium Case # 32
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TF Centerstack Shear Stress Profile for Equilibrium Case # 35


[image: image127.emf]-20-1001020

-3

-2

-1

0

1

2

3

Vertical Position (Z) in TF CenterStack (meters)

 Shear Stress (MPa)at TF CenterStack Outer Edge 

TF Centerstack Shear Stress Profile for Equilibrium Case # 33
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TF Centerstack Shear Stress Profile for Equilibrium Case # 36
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TF Centerstack Shear Stress Profile for Equilibrium Case # 37
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TF Centerstack Shear Stress Profile for Equilibrium Case # 40
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TF Centerstack Shear Stress Profile for Equilibrium Case # 38
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TF Centerstack Shear Stress Profile for Equilibrium Case # 41
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TF Centerstack Shear Stress Profile for Equilibrium Case # 39
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TF Centerstack Shear Stress Profile for Equilibrium Case # 42
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TF Centerstack Shear Stress Profile for Equilibrium Case # 43
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TF Centerstack Shear Stress Profile for Equilibrium Case # 46
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TF Centerstack Shear Stress Profile for Equilibrium Case # 44
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TF Centerstack Shear Stress Profile for Equilibrium Case # 47


[image: image139.emf]-20-1001020

-3

-2

-1

0

1

2

3

Vertical Position (Z) in TF CenterStack (meters)

 Shear Stress (MPa)at TF CenterStack Outer Edge 

TF Centerstack Shear Stress Profile for Equilibrium Case # 45
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TF Centerstack Shear Stress Profile for Equilibrium Case # 48
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TF Centerstack Shear Stress Profile for Equilibrium Case # 49
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TF Centerstack Shear Stress Profile for Equilibrium Case # 52
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TF Centerstack Shear Stress Profile for Equilibrium Case # 50
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TF Centerstack Shear Stress Profile for Equilibrium Case # 53
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TF Centerstack Shear Stress Profile for Equilibrium Case # 51
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TF Centerstack Shear Stress Profile for Equilibrium Case # 54
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TF Centerstack Shear Stress Profile for Equilibrium Case # 55
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TF Centerstack Shear Stress Profile for Equilibrium Case # 58
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TF Centerstack Shear Stress Profile for Equilibrium Case # 56
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TF Centerstack Shear Stress Profile for Equilibrium Case # 59
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TF Centerstack Shear Stress Profile for Equilibrium Case # 57
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TF Centerstack Shear Stress Profile for Equilibrium Case # 60
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TF Centerstack Shear Stress Profile for Equilibrium Case # 61
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TF Centerstack Shear Stress Profile for Equilibrium Case # 64
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TF Centerstack Shear Stress Profile for Equilibrium Case # 62
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TF Centerstack Shear Stress Profile for Equilibrium Case # 65
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TF Centerstack Shear Stress Profile for Equilibrium Case # 63
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TF Centerstack Shear Stress Profile for Equilibrium Case # 66
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TF Centerstack Shear Stress Profile for Equilibrium Case # 67
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TF Centerstack Shear Stress Profile for Equilibrium Case # 70
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TF Centerstack Shear Stress Profile for Equilibrium Case # 68
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TF Centerstack Shear Stress Profile for Equilibrium Case # 71
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TF Centerstack Shear Stress Profile for Equilibrium Case # 69
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TF Centerstack Shear Stress Profile for Equilibrium Case # 72
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TF Centerstack Shear Stress Profile for Equilibrium Case # 73
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TF Centerstack Shear Stress Profile for Equilibrium Case # 76
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TF Centerstack Shear Stress Profile for Equilibrium Case # 74
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TF Centerstack Shear Stress Profile for Equilibrium Case # 77
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TF Centerstack Shear Stress Profile for Equilibrium Case # 75
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TF Centerstack Shear Stress Profile for Equilibrium Case # 78
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TF Centerstack Shear Stress Profile for Equilibrium Case # 79
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TF Centerstack Shear Stress Profile for Equilibrium Case # 82
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TF Centerstack Shear Stress Profile for Equilibrium Case # 80
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TF Centerstack Shear Stress Profile for Equilibrium Case # 83
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TF Centerstack Shear Stress Profile for Equilibrium Case # 81
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TF Centerstack Shear Stress Profile for Equilibrium Case # 84
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TF Centerstack Shear Stress Profile for Equilibrium Case # 85
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TF Centerstack Shear Stress Profile for Equilibrium Case # 88
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TF Centerstack Shear Stress Profile for Equilibrium Case # 86
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TF Centerstack Shear Stress Profile for Equilibrium Case # 89
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TF Centerstack Shear Stress Profile for Equilibrium Case # 87
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TF Centerstack Shear Stress Profile for Equilibrium Case # 90
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TF Centerstack Shear Stress Profile for Equilibrium Case # 91
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TF Centerstack Shear Stress Profile for Equilibrium Case # 94


[image: image185.emf]-20-1001020

-3

-2

-1

0

1

2

3

Vertical Position (Z) in TF CenterStack (meters)

 Shear Stress (MPa)at TF CenterStack Outer Edge 

TF Centerstack Shear Stress Profile for Equilibrium Case # 92
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TF Centerstack Shear Stress Profile for Equilibrium Case # 95
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TF Centerstack Shear Stress Profile for Equilibrium Case # 93
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TF Centerstack Shear Stress Profile for Equilibrium Case # 96
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TF Centerstack Shear Stress Profile for +24 kA OH-Only Case


� EMBED Equation.3  ���
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Mark Smith's Global Model Data2
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Mark Smith's Global Model Data 1
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Mark Smith's Global Model Data 3
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Mark Smith's Global Model Data 4
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Mark Smith's Global Model Data 5
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Mark Smith's Global Model Data 6
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