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Summary 
This memo advances a simple but precisely accurate algorithm for evaluating out-of-plane 
torques due to magnetic interactions of poloidal magnetic fields with TF conductor current.  
Instead of the conventional complicated approach involving numerical integration of vector cross 
products of position vectors, current density vectors and poloidal magnetic field vectors at many 
evaluation points chosen along a segment of the TF conductor, this algorithm simply multiplies 
the [(130kA)(36turn)=4680000A] TF current magnitude by the difference of the per radian 
poloidal magnetic fluxes evaluated at the two ends of the segment.  (Note that the product of 
amperes and webers has the torque units, newton-meters.)  The results are mathematically 
equivalent but the torque algorithm advanced herein requires less computation and is subject to 
less error.   A full exposition of the torque algorithm is given in this memo's Appendix. 

The algorithm is applied to the NSTX CS upgrade, using the latest layout for the TF conductor 
outline and using the OH/PF coil set assumed by Reference 1, in which PF1ABC coil turn 
numbers were 120/180/180, respectively.  To increase numerical accuracy the TF conductor is 
partitioned into fsubregions separated by internal current streamlines estimated by equally 
subdividing the conductor cross section area.  Torque loading densities for current ranges in each 
of the 13 PF and OH coil circuits and for the plasma current are plotted.  MATLAB version 
R2008b was used for all numerical calculations and plots. 

Torque Algorithm Results 
Concerns have been expressed about supporting net torques on the TF outer legs by the opposing 
net torques on the TF central bundle and radial conductor assemblies.  A simple algebraic 
formula is obtained from the torque algorithm for net torque on the TF outer legs, as Eq.(1): 
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Note that vertically symmetric currents in OH, PF4 and PF5 circuits do not contribute to net TF 
OuterLeg torque, nor does plasma current in the vertically symmetric plasma model used herein.   

Larger typical values are predicted for net torque summed over the entire top half of the TF 
system, including the upper half of the TF central bundle, the upper radial assemblies, and the 
upper half of the TF outer legs.  These torques are of course balanced by opposing torques 
developed in the bottom half of the TF system.  A formula for net torque on the top half of the 
TF system is as follows: 
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Similar torque formulae can be obtained for out-of-plane torques on any TF conductor circuit 
segment, using poloidal magnetic flux values calculated at that segment's ends. Note that the 
shape of the TF conductor segment between its ends is not needed to determine its net torque.  

Poloidal magnetic flux can be evaluated by use of the Ref.(2) Excel spreadsheet.  This tool 
automatically calculates poloidal flux on a grid of 5 cm (r,z) squares extending throughout the 
entire NSTX CSU poloidal half-plane out past its TF conductors, for any user-specified set of 
currents in the OH coil, PF coils, and plasma. 

 

OOP Torque Analysis of NSTX CSU 
The latest NSTX CSU TF conductor shape definition was provided by Peter Titus on 26 June 
2009 in a file containing XYZ 3D coordinates of 4229 nodal points delimiting hexahedral 
elements in a 30 degree sector global TF model.  These were subsequently culled and sorted by 
various automated MATLAB methods to obtain a poloidal half-plane outline consisting of 322 
points, including an inner outline trace of 159 points and an outer outline trace of 163 points.  
These points were only modified from the provided file by setting their third coordinate values to 
zero without changing their other two coordinates. The resulting TF conductor outline appears in 
the following Fig.(1) MATLAB plot. 
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Figure 1: Poloidal Projection Outline of TF Conductor, 322 points 
 

Parametric variables were then calculated and saved for each point in each of the two outline 
traces, starting from zero at their innermost points on the (z=0) horizontal midplane and adding 
the distances to each successive point while proceeding in the counterclockwise direction.   After 
returning to the starting points, the saved parametric values were then normalized by dividing 
each cumulative distance value by its contour's total perimeter length.  The resulting parametric 
variables, which range from 0 to 1, represent poloidal angle.   

Finally, 2000 uniformly spaced values of this poloidal angle variable ranging from 0 to 1 were 
generated and 2000 corresponding r and z coordinate values were obtained for each of the TF 
coil's inner and outer outline curves by using MATLAB's standard interpolation m-files.  The 
two resulting 2000-point outlines are plotted below in Fig. (2).  Note that although they appear 
almost identical to the previous TF outline plot, each outline here consists of 2000 equally 
spaced points which are now linked to each other through their common normalized poloidal 
variable values.  
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Figure 2: Poloidal Projection Outline of TF Conductor, 4000 points 
 

Note that the TF current stream function which varies with the (r,z) location in the poloidal half-
plane is defined as the total TF system current that passes through the 3D circle sharing those 
cylindrical coordinates.  It varies from zero at (r,z) locations not linking the TF coils to the total 
TF current (i.e., number of turns times current per turn) at locations within the TF coil system 
bore.  At intermediate locations within the TF conductor it varies between those values.  Level 
set contours of the TF current stream function are also streamlines of the TF current flow. 

As plotted, the (red) outer outline is the zero value contour of the TF current stream function and 
the (blue) inner outline is the contour of the TF current stream function at its full, 100% of TF 
system current, value.  It was decided for calculations herein to try to improve accuracy by 
estimating how the TF current is distributed within the TF conductor.  This was done by 
estimating the (r,z) coordinate locations at each of 2000 poloidal variable points for TF current 
stream function contours enclosing 25%, 50%, and 75%, respectively, of the total TF current.  
Ideally these contour estimates would be obtained by solving conductive media equations using 
ohms law, but this was not done.  Instead, the estimated contours were obtained by interpolation 
between the outline coordinates for common poloidal angle variables. For the vertical (z) 
coordinates, linear interpolation was used directly.  However, a different method was used to 
interpolate the r coordinate since conductor thickness in the toroidal direction varies in 
proportion to r for locations in and near the TF central bundle but takes on constant thickness for 
outer locations.  Linear interpolation of a nonlinear function was used, where that function 
switched from a quadratic for inner locations to a straight line for outer locations.  For this 
purpose the switchover radius between variable and constant toroidal thickness was estimated as 
r=0.3339 meters, based on inspection of plots showing the 4229 points of the global model. 
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The Fig.(3) plot follows showing the resulting estimated three internal contours and the two 
bounding contours of the TF current stream function. 
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Figure 3: Poloidal Projection of TF Current Stream Function Contours, 10000 points 
 
It may be useful to have plots showing r and z for the bounding outlines and internal contours as 
functions of the poloidal angle parametric variable.  These follow: 
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Figure 4: Radial Coordinates of TF Current Stream Function Contours vs Poloidal Variable 
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Figure 5: Vertical Coordinates of TF Current Stream Function Contours vs Poloidal Variable 
 

In order to proceed further it is necessary to specify a PF coil set.  It was decided to use the same 
PF coil set representation that had been used in Reference 1.   Details of the assumed PF and OH 
coils have been reproduced here as Table 1 and are depicted in Fig.(6). 
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Figure 6: Poloidal Projection of PF&OH coils, with TF Current Stream Function Contours 



 
Table 1:  Assumed OH/PF Coil System 
Coil Power Series-connected    Winding Geometry   Rectangular Matrix Of Turns   conductor conductor 
Circuit Name Rectangular R (center) ∆R Z (center) ∆Z # in z direction # in r direction Total # turns turn width turn height
  Winding Name cm cm cm cm       cm cm 
OH OH1 21.9770 1.5988 0.0000 424.1600 257 1 257 1.5988 1.6504
  OH2 23.5757 1.5988 0.0000 420.8591 255 1 255 1.5988 1.6504
  OH3 25.1745 1.5988 0.0000 417.5583 253 1 253 1.5988 1.6504
  OH4 26.7732 1.5988 0.0000 414.2574 251 1 251 1.5988 1.6504
PF1AU PF1AU 31.9300 6.2800 159.0600 47.1000 30 4 120 1.5700 1.5700
PF1BU PF1BU  40.0400 3.7900 180.4200 16.8300 30 6 180 0.6317 0.5610
PF1CU PF1CU  55.0500 3.7900 180.4200 16.8300 30 6 180 0.6317 0.5610
PF2U PF2U1 79.9998 16.2712 193.3473 6.7970 2 7 14 2.3245 3.3985
  PF2U2 79.9998 16.2712 185.2600 6.7970 2 7 14 2.3245 3.3985
PF3U PF3U1a 148.2900 16.3100 156.9600 3.4000 1 7 7 2.3300 3.4000
  PF3U1b 149.4500 18.6400 153.5600 3.4000 1 8 8 2.3300 3.4000
  PF3U2a 148.2900 16.3100 165.0500 3.4000 1 7 7 2.3300 3.4000
  PF3U2b 149.4500 18.6400 161.6500 3.4000 1 8 8 2.3300 3.4000
PF4 PF4U1a 179.5000 9.2200 87.1100 3.4000 1 4 4 2.3050 3.4000
  PF4U1b 180.6500 11.5300 90.5100 3.4000 1 5 5 2.3060 3.4000
  PF4U2 179.4600 9.1500 80.7200 6.8000 2 4 8 2.2875 3.4000
  PF4L1a 179.5000 9.2200 -87.1100 3.4000 1 4 4 2.3050 3.4000
  PF4L1b 180.6500 11.5300 -90.5100 3.4000 1 5 5 2.3060 3.4000
  PF4L2 179.4600 9.1500 -80.7200 6.8000 2 4 8 2.2875 3.4000
PF5 PF5U1 201.2798 13.5331 65.2069 6.8580 2 6 12 2.2555 3.4290
  PF5U2 201.2798 13.5331 57.8002 6.8580 2 6 12 2.2555 3.4290
  PF5L1 201.2798 13.5331 -65.2069 6.8580 2 6 12 2.2555 3.4290
  PF5L2 201.2798 13.5331 -57.8002 6.8580 2 6 12 2.2555 3.4290
PF3L PF3L1a 148.2900 16.3100 -156.9600 3.4000 1 7 7 2.3300 3.4000
  PF3L1b 149.4500 18.6400 -153.5600 3.4000 1 8 8 2.3300 3.4000
  PF3L2a 148.2900 16.3100 -165.0500 3.4000 1 7 7 2.3300 3.4000
  PF3L2b 149.4500 18.6400 -161.6500 3.4000 1 8 8 2.3300 3.4000
PF2L PF2L1 79.9998 16.2712 -193.3473 6.7970 2 7 14 2.3245 3.3985
  PF2L2 79.9998 16.2712 -185.2600 6.7970 2 7 14 2.3245 3.3985
PF1CL PF1CL  55.0500 3.7900 -180.4200 16.8300 30 6 180 0.6317 0.5610
PF1BL PF1BL  40.0400 3.7900 -180.4200 16.8300 30 6 180 0.6317 0.5610
PF1AL PF1AL 31.9300 6.2800 -159.0600 47.1000 30 4 120 1.5700 1.5700
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Next, poloidal flux was calculated for each of the 2000 locations on each of the five contours for 
each of the 13 coil circuits and for a crude electromagnetic model of a "plasma" having uniform 
current density and a rectangular cross section extending over 0.52<r<1.63 and -1<z<1, all in 
meters.  Plots of the computed poloidal magnetic fluxes appear below in Figs.(7)-(11). 
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Figure 7: Poloidal Flux Per Ampere Excitation in Circuits 1-3 
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Figure 8: Poloidal Flux Per Ampere Excitation in Circuits 4-6 
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Figure 9: Poloidal Flux Per Ampere Excitation in Circuits 7-9 
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Figure 10: Poloidal Flux Per Ampere Excitation in Circuits 10-12 
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Figure 11: Poloidal Flux Per Ampere Excitation in Circuits 13-14 
 

For each coil circuit, the mean flux was next calculated for each poloidal location as a weighted 
average of the flux values on the five current stream function contours, using weighting factors 
[0.125 0.25 0.25 0.25 0.125].   Local torque densities per ampere of circuit current are then 
evaluated as the product of total TF current times the finite difference derivative with respect to 
the poloidal angle variable of the mean flux divided by 2π.  The resulting profiles were 
multiplied respectively by the Table 2 maximum and minimum circuit currents to establish the 
ranges of torque densities versus poloidal locations.  Results appear in Figs.12-16. 

Table 2:  Assumed Coil And Plasma Current Ranges  
COIL 
CIRCUIT 
NAME 

MINIMUM 
CURRENT 
(Amperes) 

MAXIMUM 
CURRENT 
(Amperes) 

    'OH' -24000 24000 
    'PF1AU' -3164.5 11049.2 
    'PF1BU' -538.99 1107.333 
    'PF1CU' -747.34 2053.578 
    'PF2U' 20000 0 
    'PF3U' -16000 8000 
    'PF4' -20000 15000 
    'PF5' -32000 0 
    'PF3L' -16000 8000 
    'PF2L' 20000 0 
    'PF1CL' -747.34 2053.578 
    'PF1BL'  ‐538.99  1107.333 
    'PF1AL'  ‐3164.5  11049.2 
    'PLASMA'  0  2000000 
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Figure 12: Torque Density For Maximal Range of Currents in Circuits 1-3 
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Figure 13: Torque Density For Maximal Range of Currents in Circuits 4-6 
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Figure 14: Torque Density For Maximal Range of Currents in Circuits 7-9 
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Figure 15: Torque Density For Maximal Range of Currents in Circuits 10-12 
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Figure 16: Torque Density For Maximal Range of Currents in Circuits 13-14 
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APPENDIX 

 

Out-Of-Plane (OOP) Torque Algorithm Exposition 
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Derivation of Torsion Load Formulae for Out-Of-Plane (OOP) forces on Toroidal Field Coils 

In general, the total moment (i.e., torque) vector of electromagnetic forces about an origin is the volume 
integral of the following differential: 
 

( )dVBJrMd
rrrr

××=  (A1) 

where rr is the position vector of a differential volume, dV , J
r

 is the current density vector and B
r

 is the 
magnetic field vector.  For a toroidal field coil system it is appropriate to use a cylindrical coordinate 
system. (r,θ,z),  in which the vertically oriented  z axis is the central axis of symmetry which includes the 
origin.  To analyze OOP forces in a near-axisymmetric system it is sufficient  to consider only current 
densities and magnetic fields lying within the local poloidal plane and depending only on the position 
vector within that same plane.  Thus, these vectors can be rewritten as follows: 

zBrBB

zJrJJ

zzrrr

zr

zr

ˆˆ
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r
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 (A2) 

where    are unit vectors aligned with the local coordinate system directions. zr ˆ,ˆ,ˆ θ

The  volume differential in cylindrical coordinates becomes: 

dzdrdrdV θ≡  (A3) 

Substituting and combining terms to simplify the result, the differential moment vector is rewritten as 
follows in Eq. (A4) 

( )( ) dzddrrrzzrBJBJMd zrrz θˆˆ +−=
r

 (A4) 

When integrating Eq.(A4) over the full range of toroidal angle, 0≤θ<2π,  the radial unit vector term, r̂ , 
cancels itself out for rotationally symmetric poloidal magnetic fields and TF coil current densities.  The 
remaining nonzero part of the integral is stated in Eq.(A5). 

( ) ( )∫∫∫∫∫ −=−= dzdrrBJBJzdzddrrBJBJzM zrrzzrrz
22 2ˆˆ πθ

r
 (A5) 

In this last form, the double integral is taken over the (r,z) poloidal half-plane.  However, current density 
components are zero everywhere outside the TF coils so the integration region only needs to include the 
(r,z) projection of TF coil conductors.   

An important simplification results from changing over to stream function variables.  For axisymmetric 
systems the poloidal flux stream function, Ψ(r,z),  is the total magnetic flux enclosed by the circle 
centered on and normal to the z axis which passes through (r,z).  Poloidal magnetic flux is related to the 
poloidal magnetic field as stated by Eq.(A6). 
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 (A7) 

We similarly define the toroidal field coil current stream function, I(r,z), as the total TF coil current 
enclosed by the circle about the z axis passing through (r,z).  This current stream function is related to the 
TF current density as stated by Eq.(A8). 
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Substituting these stream functions of Eqs.(A7) and (A9) into the previous integral yields Eq.(A10a). 
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  (A10a)  

As stated previously, the radially oriented term cancels out while integrating over toroidal angle, leaving 
Eq.(A10b) as the result. 
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 (A10b) 

This is a particularly simple and compact formula involving the integral of the cross product of gradients 
of two scalar functions.  The poloidal magnetic flux function can be directly obtained to any desired 
accuracy by use of Greens functions involving the standard elliptic integral functions, K() and E(), and the 
current stream function can be approximated using the projected outline of TF conductors.  Furthermore, 
the integral itself can be approximated from these data using very simple algorithms. 
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Limit for the case of a slender TF conductor 
Vector identities applied to Eq.(A10b) imply that 
 

( )(∫∫ Ψ∇•×∇−= θ )
π

ˆ
2
ˆ

IdzdrzM
r

 (A11) 

Here, the integration is over the area of the poloidal projection of the TF conductor segment whose net 
torque is to be calculated.   If the conductor's projection is slender with a small width, w, we can change 
the element of poloidal area from dA=drdz to dA=dldw where l represents distance along the conductor's 
length.  Assuming constant current density in the conductor the gradient vector of the current stream 

function, , has a magnitude equal to the total TF urrent divided by the width, I∇
w

I
I TF=∇  , and the 

gradient vector 's direction is perpendicular to the local TF current streamline, pointing towards the coil's 

bore.  It follows that ( )θ̂×∇I  has the same magnitude but is pointed in the same direction as the flowing 
TF current,  a direction denoted here by the unit vector, .  With these substitutions, the net torque over a 
slender TF conductor segment extending from point A to point B can be rewritten as in Eq.(A12). 
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 (A12) 

However, this last integral expression in Eq.(A12) may be immediately recognized as the line integral of 
the gradient of a scalar function, so it has the following Eq.(A13)exact solution: 

π2
ˆ BA

TFIzM
Ψ−Ψ

=
r

 (A13) 

 
Thus, the general formula of Eq.(A12), when interpreted for slender conductors, asserts that the net torque 
over a poloidal length of TF conductor is simply the product of the difference between the poloidal flux 
values at the conductor's ends, divided by 2π, then multiplied by the TF current.  
 
Derivation of Approximation For Wider TF Conductors    
Consider a triangular region in the poloidal half-plane, ΔABC,  
on which the exact scalar functions I(r,z)  and Ψ(r,z) are to be 

linearly approximated by ( zrI , )~ and ( )zr,~Ψ using function 
values that are exact at the triangle's three corners.  The linear 
models are as follows: 
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00  are linear model coefficient parameters that have constant 

values throughout the triangle.  The requirement to match the approximation to actual function values at 
triangle corners yields the following matrix equations, where  ( ) ( ) ( )CCBBAA zrzrzr ,,,,,  are the coordinates 

of the triangle's corners: 
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These can be readily solved in closed form to find the appropriate coefficient parameter values.  For the 
partial derivative coefficient parameters the solutions are as follows: 
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Using this approximation the previous integrand becomes: 
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Note that as a result of assuming a linear model over the triangle, this approximation gives a constant 
value of the integrand over the triangle.  Thus, the integral over the triangle is simply this integrand's 
constant value times the triangle's area, which, assuming the ABC point sequence is counterclockwise, is: 
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This cancels all (r,z) coordinates, so the integral over the triangle becomes as stated in Eq.(A20). 
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This formula can be applied to an adjacent bordering triangle, ΔACD, by changing indices as in Eq.(A21). 
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The two triangles together form a quadrilateral, ABCD, so the 
integral over the entire quadrilateral is the sum of the two 
triangle integrals: 
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The quadrilateral, ABCD, could alternatively be decomposed in 
a different way into two triangles, i.e., into triangle ΔABD and 
triangle ΔBCD.  Although the linear coefficient parameter sets 
that would apply for these triangles would be different from the 
above, the final resulting formula for the moment integral over 
the quadrilateral ABCD turns out to be identically the same!    

Note that in the important special case wherein the 
quadrilateral's corner points are located on two TF current 
stream function contour lines, it follows  that IA=ID  and IB=IC .  
In that case the approximate  formula for net torque in the 
quadrilateral region of the poloidal half-plane becomes 
simplified to Eq.(A23). 
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This is the simple average of the differences between per radian poloidal magnetic fluxes at the two ends 
of each of the two bounding current stream function contours, multiplied by the TF current enclosed 
between those two current stream function contours. 

Thus, the torsional OOP loading of the TF coil system can be evaluated by taking simple sums and 
differences of poloidal flux evaluated at points located on TF current streamlines.   

A Higher Accuracy Numerical Approximation  
In the present case of this memo's calculations of net torque in the 
NSTX CSU TF conductor due to poloidal field interactions with TF 
current, five TF current streamlines have been chosen and their 
separation in terms of contour levels is the total TF current divided 
by four.  The adjacent diagram illustrates the five contours and flux 
evaluation points on those contours for two adjacent poloidal angle 
locations.  Applying the torque formula to each of the for 
quadrilaterals having the ten indicated locations as their corners, the 
sum of the net torque is as stated in Eq.(A24). 
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Thus, in the sum over one poloidal interval we must premultiply the column vector of five local flux 
values by the row vector, [1 2 2 2 1], then divide by 16π before subtracting from the corresponding result 
for the other poloidal location.   

Note that if all five flux values at one poloidal location were identical to each other the result would be 
that single value divided by  2π.    

Note also that there is no benefit from repeating this summation procedure over many poloidal intervals in 
a TF conductor segment and summing their results, since the quantities evaluated at all intermediate 
poloidal locations would identically cancel each other out in taking the poloidal intervals sum.  It is 
mathematically equivalent to directly subtract the quantities calculated on the five contours at the TF 
conductor segment's ends.   

 

  


