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Date:
April 20, 2009

To:
     Charles Neumeyer, Phil Heitzenroeder, NSTX Distribution

From:
Peter Titus

Subject:      Coupled Electromagnic-Thermal Analysis - Structural Pass with thermal Stress, Low Flex Stiffness. 

The April 7 memo modeled the flex at the end of the extended hub as a solid copper loop. This is much stiffer than Phil intended for the jumpers. In this analysis, the structural modesl is re-run with a low modulus for the flex region.  The solid loop  supported the cantelevered extended hub, and reduced the bending stresses early in the pulse, and caused an additional bending stress when the loop resisted the vertical growth of the central column later in the pulse. These effects are not large, but  needed to be properly quantified. In addition, the hoop stresses in the vicinity of the corner are investigated, with particular attention to possibly developing hoop tension. Hoop tension or through thickness tension in the turn to turn insulation, may need some remedy. I believe Phil mentioned the possibly of providing  some preload from a glass, kevlar, or zylon winding?  The location of peak torsional shear stress at the OD and peak hoop tension at the ID will reduce the problem, but a shear margin calculation will be required, typical of bitter plate TF’s with corners that tend to de-wedge. 
Inner Leg Tensile Hoop Stress

[image: image10.png]T




Figure 1 Hoop Stress Early in the Pulse

    Ideally the TF inner leg experiences a large centering force that causes wedge pressures that improve bond stresngth and frictional shear strength of the turn to turn insulatiuon. At the upper and lower corner, wedge pressures are diminshed to the point where tensions can develop.  There are potentially three sources of hoop tension in the TF inner leg. The first is the inner TF corner de-wedging effect resulting from the bursting or radially outward load from the outboard vertical leg..  In NSTX most of this is resisted by the umbrella structure, with the flex isolating the inner leg from the outer leg motions and loads that have been intercepted by the umbrella structure. The second source of tension, is the upward bending load from the inventory of the vertical separating force that is applied through the extended hub, and some lenght of the flexible strap. The extended hub behaves as a cantelever, and the moment that results, is resisted by a force couple that causes radial tension at the lower part of the extended hub, and compression at the top. The third source of hoop tension is the thermal differential between the non-current carrying extension of the inner leg, and the  portion of the TF, towards the plasma, that sees currents and  consequently  sees resistive heat-up. In the extended hub joint concept the largest tensile stress occurs at the end of the pulse when the TF central column upper and lower corners are warm while the inner leg extension  is cold. This is simply an E*alpha*deltaT effect.  Since there is no current in the extension, it remains at the initial temperature, and the inner turn radius heats to the temperature expected from the current density augnmeted somewhat by the peak current density at the corner. If  the differeential temperatures are close in proximity, and equal regions of metal  share in  absorbing the thermal strain the stres would be half the E*alpha*deltaT stress or 117e9*17e-6*85 degrees/2 or 84 Mpa tension and 84 Mpa compression.  The fact that the hot spot and cold sponts are some distance away reduces this. The analysis yields 40 Mpa tension, and 50 Mpa compression at the cold spot, and hot spot respectively, at the end of the pulse, when currents are turned off. 

    The extension connects torsionally to the umbrella structure cover, and must be able to support torsional shear stress, which is as high as 42 Mpa in the analysis of the Titus-Woolley joint with jacking ring. The torsional shear should be similar in the extended hub design, The hoop tension occurs at a different loacation than the  peak torsional shear  shear and  a fully consistent modeling of the out-of-plane loads and current diffusion thermal effects will be needed for the extended hub concept. 
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Figure 2 Hoop Stress at The End of Pulse
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Figure 4 (Figure 20 from the April 7 memo) Upper Inner Corner Temperature Time History
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Figure 6 Torsional Shear Stresses from the “Titus-Wooley-Jacking Ring” analysis
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Figure 7 Inner Leg Von Mises Stresses for the Soft Flex
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Figure 3 Hoop Stress after 10.86 Seconds. 
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Figure 5 Hoop Stress in the Inner Leg of the TF with a Soft Flex
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Figure 8  Inner Corner Von Mises Stress for the Soft Flex
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Figure 9 Stiff Flex TF Corner Stress. The stiff flex causes an additional bending stress at the end of the pulse, when the TF currents are off  and the inner leg expansion of about 4 mm is being resisted by the stiff flex connected to the umbrella structure. See also Figure 28 of the April 7 memo
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