

NSTX Upgrade

TF Flex Joint and TF Bundle Stub

NSTXU-CALC-132-06-01

Rev 1

February 2, 2011

Prepared By:					
Tom Willard					
Reviewed By:					
Ali Zolfaghari					
Approved By:					
Jim Chrzanowski, NSTX Cognizant Engineer					

PPPL Calculation Form

Calculation #	NSTX-CALC-132-06	Revision #	01	WP #, if any (ENG-032)	
Purpose of Cal	culation: (Define why the calculation	n is being performe	d.)		
	al Design Criteria, specifically,			to meet the requirements of the ection I-4.2 for 60,000 full power	
References (List	t any source of design information inclu	nding computer prog	ram titles and rev	vision levels.)	
		t, I. Zatz			
Assumptions (I	dentify all assumptions made as part of	this calculation.)			
was assumed w 2.) A one-way o	orst-case for this analysis. coupled electromagnetic-structu parate. This assumption was pro	ral analysis was	s used, based o	on the assumption that the bolted ntact status of the joints after the	
Calculation (Ca	alculation is either documented here or a	attached)			
See attached.					
Conclusions (S)	pecify whether or not the purpose of the	e calculation was acc	complished.)		
1. The maximum stress in the lamellae is 19 ksi, below the NSTX Design Criteria allowable to meet the fatigue requirements for 60,000 full-power cycles; 2.) The HeliCoil and SuperBolt stresses are below the maximum allowable to meet the fatigue requirement; 3.) The bolted joints were shown not to separate, and the minimum contact pressure is well above the design goal of 1500 psi. 4.) The dynamic load factor was calculated for the flex strap alone. A full transient electromagnetic disruption analysis using the worst-case combination of current and plasma disruption scenarios should be performed to fully qualify the joint and flex strap designs.					
Cognizant Engi	neer's printed name, signature,	and date			
I have reviewed correct.	d this calculation and, to my p	professional sat	isfaction, it is	s properly performed and	
Checker's print	ed name, signature, and date				

NSTXU-CALC-132-06-01 TF Flex Joint and TF Bundle Stub

02-03-11

Study Goals

Purpose:

To determine if the upgrade TF flex joint and bundle stub design is adequate to meet the requirements of the NSTX Structural Design Criteria, specifically, the fatigue requirements of Section I-4.2 for 60,000 full power cycles without failure.

- Strap Lamellae
 - Stresses
 - Buckling
- Bolted Joints
 - Thread shear stress
 - Contact status and pressure

Outline

- Wire EDM Flex Strap and Joint Design
 - Flex Strap
 - Superbolt Jack-screw Tensioned Nut
- Analysis
 - Magnetostatic
 - Magnetic Flux Density
 - Current Density
 - Transient Thermal
 - Temperature
 - Static Structural
 - Conductor Stress
 - Lamella Stress
 - · Thread and Bolt Stress
 - Contact Pressure
- Development Tests
- Conclusion

NSTX CSU Flex Strap with Applied Boundary Conditions

Flex Joint Design using *Superbolt* Jack-Screw Tensioned Nuts

Superbolt Jack-Screw Tensioned Nut

- Advantages of using Superbolts
 - Easy Installation and removal of individual flex assemblies
 - Low torque required: ~ 11 ft-lbf
 - Smaller inner-radius of flex strap required, allows use of more laminations, reducing the maximum lamination stress

Coupled *Maxwell* Magnetostatic and *ANSYS* Transient Thermal/ Static Structural Analysis Block Diagram

Note: This sequential, one-way coupled analysis is only valid if the bolted joints do not separate, and if the electrical and thermal contact resistances are a weak function of contact pressure, which is true in this case if the minimum local contact pressure is above 1500 psi.

SolidWorks Model of 3 Strap Assembly with Simplified OH, PF, and TF Coils

Maxwell Magnetostatic Analysis: DM Solid Model

Maxwell Magnetostatic Results: Current Density

Maxwell Magnetostatic Results: Ohmic Loss

Maxwell Magnetostatic Results: Magnetic Flux Density

ANSYS Thermal and Structural Analysis Solid Model

ANSYS Thermal and Structural Analysis Mesh

Parts Common Between Maxwell and ANSYS Analysis

ANSYS Transient Thermal Results: Temperature

ANSYS Static Structural Results: Tresca Stress 1

ANSYS Static Structural Results: Tresca Stress 2

ANSYS Static Structural Results: Tresca Stress 4

ANSYS Static Structural Results: Lamination Tresca Stress

Current Scenario #82, 30 Laminations/ Strap, Center Strap

ANSYS Static Structural Results: Joint Tresca Stress

ANSYS Static Structural Results: 5/8" Bolted Contact Pressure

ANSYS Static Structural Results: 3/8" Bolted Contact Pressure

Flex Strap and Bolted Joint Design Verification Tests

Tests Performed at 3 Different Levels

- Material Level
 - C18150 H01 fatigue strength (R0)
- Stub Joint Level
 - HeliCoil insert pull-out strength in C18150 copper stub, static and fatigue
 - Inconel 718 custom Superbolt nut/ stud fatigue strength
- Flex Strap Assembly Level
 - Manufacturability
 - In-plane bending stiffness
 - · Cyclic, simulated maximum combined loads
 - Contact pressure distribution
 - Bolt pretension only
 - Bolt pretension + simulated maximum combined-load
 - Superbolt nut tensioned in umbrella segment mock-up

Conclusions

1. Lamination Stress:

Excluding singularities, the maximum Tresca stress in the laminations is 18.9 ksi. To satisfy the requires of the NSTX Structural Design Criteria, the fatigue strength at 60 K cycles must be greater than twice this stress, or the fatigue strength at 1.2 E06 cycles (20x N) must be equal to or greater than this stress, whichever is the more severe requirement.

The fatigue S-N curve for C18150 copper-zirconium, with the maximum lamination Tresca stress
plotted at N = 60 K cycles, is shown above. The lamination stress is slightly below the 2x stress level
and meets all the requirement of the Design Criteria.

2. Copper Flag Thread Stress:

The average shear stress in the copper threads is 34.8 ksi. To satisfy the Design Criteria, the shear stress must be less than 0.6 Sm = .4 Sy = 37.5 ksi.

The Modified Goodman diagram for C18150 copper-chromium-zirconium, with thread Tresca stress
plotted, is shown above. The thread stress meets all the requirements of the Design Criteria.

3. Contact Status/ Pressure:

Results show that none of the joints separate, and that the minimum local contact pressure is approximately 2600 psi, which is 1100 psi above the minimum requirement.

Initial assumptions are correct, sequential one-way coupled model is valid.

4. Lamination Buckling Load Multiplier Factor (LMF):

The 1st mode LMF is 58 (see Appendix), well above the Design Criteria linear buckling requirement of 5.

Appendix A

Lamella Stress Linearization

ANSYS Static Structural Results: Lamination Tresca Stress

ANSYS Static Structural Results: Lamination Stress Singularity

Current Scenario #82, 30 Laminations/ Strap, Center Strap

ANSYS Static Structural Results: Stress Linearization

Current Scenario #82, 30 Laminations/ Strap, Worst-Case Lamination

Appendix B

Lamella Buckling Analysis

Single Lamination Linear Buckling Model Results

Appendix C

Flex Strap Dynamic Load Factor

HALF-SINE PULSE

Consider the "half-sine" acceleration pulse (Fig. 31.20*A*) of amplitude \ddot{u}_m and duration τ :

$$\ddot{u} = \ddot{u}_m \sin \frac{\pi t}{\tau} \qquad [0 \le t \le \tau]$$

$$\ddot{u} = 0 \qquad [t > \tau]$$
(31.34)

From Eq. (31.28), the effective duration is

$$\tau_r = \frac{2}{\pi} \ \tau \tag{31.35}$$

VERSED SINE PULSE

The versed sine pulse (Fig. 31.20B) is described by

$$\ddot{u} = \frac{\ddot{u}_m}{2} \left(1 - \cos \frac{2\pi t}{\tau} \right) = \ddot{u}_m \sin^2 \frac{\pi t}{\tau} \qquad [0 \le t \le \tau]$$

$$\ddot{u} = 0 \qquad [t > \tau]$$
(31.36)

The effective duration τ_r given by Eq. (31.28) is

$$\tau_r = (\frac{1}{2})\tau \tag{31.37}$$

FIGURE 31.20 Half-sine acceleration pulse (A) and versed sine acceleration pulse (B).

FIGURE 8.35 Pulse formed by a straight-line rise followed by an exponential decay asymptotic to the time axis.

t_r ~ 6 ms

Centered Plasma Disruption: Effective Pulse Duration

Modal Analysis Results: Flex Strap Mode 1 = 65 Hz

FIGURE 31.22 Shock transmissibility for the undamped linear system of Fig. 31.6 as a function of angular natural frequency ω_n and effective pulse duration τ_r .