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Your moment calculations (CALC-132-03) are elegant and will be useful to find the maximums in Charlie’s
spreadsheet —

The summation of the outer leg moment is directly useful in evaluations of the up-down asymmetric case that
Han is running in the diamond truss/tangential - radius rod calculations.

An upper half vs. lower half of the outer legs would be useful in that those loads are either to be equilibrated
through the diamond truss or the tangential radius rods and vessel.

A moment summation of the upper half vs lower half of the tokamak is not useful because the stiffness of the
structure will determine how much torque goes to the central column and how much goes to the outer TF and
vessel structures.

A very useful calculation would be the build-up of torsional shear in the TF inner leg. | believe you can easily
calculate this by summing the torsional moment from the bottom to positions along the height of the central
column. This would give torque distribution and a total torque on the central column. You could assume the total
torque is reacted equally by the top and bottom umbrella structure domes or diaphrams. Then divide by the
distribution by the torsional resistance factor to get the shear stress. This could readily be implements in
Charlie’s system analysis program.
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Figure 2 Simple Toroidal Shell Model. OOP loads are
computed from the TF current and PF currents using an
elliptical integral solution for the PF fields. TF OOP loads are
assumed to be applied to a toroidal shell — with varying
thickness to simulate more complex OOP structures. Shear
deformations are accumulated to a split in the shell, then a

Figure 1 NSTX Shell Model




The distribution of torsion along the height of the TF central column is needed because there are torsional stress
reversals in the central column that you won’t see if you just sum the moment on the central column. These are

evident in Figure 3 for the IM and equilibria results.

I am including some results of the torque shell program I described in earlier notes and which is documented in
ref[2]. The results presented are for the OH on only, and the “squareness” equilibria . These analyses produced
a -17.7 MPa torsional shear for IM and about 4 MPa for the equilibria. Figure 4 shows the results for the inner
leg torsional shear stress from the global model, which is currently in process and the shell model. Figures 5
through 10 are some additional results for the .1 squareness equilibria
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Figure 3 - Torsional Shear for IM and some Equilibria
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Figure 4 - Comparison of Global FEA and Simple Shell Analyses
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Figure 5 - OOP Force Density Along TF CL starting from
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Figure 6- Torsional Shear Stress Along TF CL starting from
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Figure 7 Radial Polidal Field
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Figure 8 Poloidal Field Vectors, Coils, and Currents
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Figure 9 Out-of-Plane torsional shear
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Figure 10 Out-of-Plane Displacements and Out of Plane
Forces




