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Executive Summary

The Center Stack Tiles for the NSTX-CSU program are shown to be capable of withstanding the original GRD heat flux requirements using the prescribed ATJ graphite. The tile mounting scheme, consisting of T-bar supports for the CS Angle Section (CSAS) Tiles and the Inboard Divertor Horizontal (IBDhs) and Vertical (IBDvs) Tiles, and the tray support for the Center Stack First Wall (CSFW) Tiles is adequate to support the tiles against the anticipated thermal, eddy current and halo current loads with acceptable bolt loads. 

This is premised on the poloidal flowing halo current’s interaction with the TF field always results in tile forces which are away from the plasma, regardless of the plasma current and TF field directions as observed in NSTX operation. While the interaction of toroidal flowing halo currents, which will be in both directions due to the Toroidal Peaking, with the PF field produce forces both toward and away from the plasma, they are shown to be small relative to the poloidal current forces and result in net forces away from the plasma. If net forces were reversed, halo currents from a 2 MA plasma may not be tolerable due to high tensile stresses in the ATJ.

The analysis shows that the inclusion of Grafoil under the CSAS, IBDvs and IBDhs combined with the active cooling will significantly limit the thermal ratcheting of the tiles whether Li coated (with assumed emissivity of 0.3) or uncoated (with assumed emissivity of 0.7). The active cooling also offers adequate protection of the neighboring PF and OH coils and reduces the heating of the CS Casing. The flow rate and back pressure are high enough to avoid boiling of the water.

The Grafoil is shown to be structural compliant to allow relatively free thermal expansion of the tiles provided the bolts are only lightly preloaded and do not over compress the Grafoil.

Tile Thermal and EM Stresses are within acceptable limits for ATJ graphite.

Introduction

The Center Stack Casing (CSC) Plasma Facing Components (PFC) tiles are designed to protect the Center Stack from the high heat fluxes of the plasma. They are divided into four sections of tiles referred to in the General Requirements Document (GRD) as the Inboard Divertor Horizontal (IBDhs) and Vertical (IBDvs) Tiles, the CS Angle Section (CSAS) Tiles, and the Center Stack First Wall (CSFW) Tiles. The GRD requires all CSC PFC tiles be designed using high-grade graphite material. The use of carbon fiber composites is not permitted due to Lithium retention of the coarse weave. The available tile thickness is also dictated by the GRD. As a result the goal of the analysis is to establish safe operating limits up to the GRD desired level. Tile mounting details have been optimized within these constraints to enhance the thermal performance while withstanding the electromagnetic loading from plasma disruption induced eddy currents and halo currents.

Heat is removed from the CSAS, IBDhs and IBDvs tiles by radiation to cooled outboard components (OD, PP & VV) and by the CSC water cooling system. The CSFW tiles are only radiation cooled since the CSC cooling does not extend up between the Casing and the OH coils. One of the design decisions resulting from this analysis is the use of a thermal interface material – Grafoil – between the tiles and the CSC. The original plan was to limit the heat transfer between the tiles and the CSC by not using Grafoil and relying on radiation only, out of concern about over heating the water.  There are now four CSC cooling circuits in the design (two on top and two on the bottom) where there are dedicated circuits for the high heat flux IBDhs. Analysis has shown them to be adequate to safely remove the heat during the transient. The result is the water cooled tiles do not thermally ratchet with repeated pulsing. There will be ratcheting of the uncooled CSFW but the incident heat fluxes are low as would be the peak temperatures.




Assumptions

The tile mounting schemes are designed to permit relatively free thermal expansion, minimizing thermal stresses. The CSAS, IBDhs and IBDvs tiles use T-bar supports held by bolts with Belleville washers and with compliant Grafoil underneath. The bolts are lightly loaded (500 N or 112 lbs) to permit bowing of the tiles under thermal gradients. Tolerances are set to assure the load path for EM forces is directly into the Grafoil and not the bending the tile over the T-Bar. 

The analysis assumes the poloidal flowing halo current’s interaction with the TF field always results in tile forces which are away from the plasma, regardless of the plasma current and TF field directions as observed in NSTX operation. While the interaction of toroidal flowing halo currents, which will be in both directions due to the Toroidal Peaking, with the PF field produce forces both toward and away from the plasma, they are shown to be small relative to the poloidal current forces and result in net forces away from the plasma. If net forces were reversed, halo currents from a 2 MA plasma may not be tolerable due to high tensile stresses in the ATJ.

The analysis is done using the average heat fluxes associated with a 14 MW plasma of 5 second duration pulse with 1200 second rep rate.


Method of Analysis 

ANSYS models were used to analyze the thermal and structural response of each of the four tile types. ProE models of the tile and supports were imported into ANSYS Classic. A thermal transient was run to generate the temperature distribution on the ATJ tiles. 




Eddy currents were calculated using max values of dB/dt (vertical and radial) at the tile locations found from scanning the 5 disruption scenarios given in Table 2.2 of the GRD.  The scans were done using the SPARK code with previously generated models of the VV, CS and PP. 






The background maximum field values were obtained by scanning thru the 96 operating scenarios specified in the Design Point Spreadsheet “NSTX_CS_Upgrade_100504.xls” using a FORTRAN code built on the Magnetics Library routine FICOI. This was found to be in agreement with results generated by others using the OPERA code.



Halo currents in the tiles are based on the resistive sharing of poloidal currents with the CSC. While the tiles themselves are not poloidally continuous, it is postulated that during a halo current strike plasma fills the gaps between the participating tiles and shorts them out. At an estimate temperature of 10ev, plasma resistivity is comparable to ATJ graphite.



The tile thermal and structural performance is based on the use of ATJ graphite who’s properties are given below.


Results

A 1-D thermal performance of ATJ Graphite was generated at heat fluxes varying from 5 15 MW/m2 (DN) to 15 MW/m2 (SN) for comparison. It suggests that the design which is governed per the GRD by the DN operation for 5 sec would limit single null operation to under 1 sec.


A 2-D axisymetric thermal model to the previously run was modified to reflect the use of Grafoil under the tiles. The model was also modified to include the effect of water transport (using ANSYS fluid116 elements) instead of just using an effective film coefficient as used in earlier analyses. This limited the thermal ratcheting while still providing adequate limits on the water temperature rise as shown below.











A halo current distribution model was also created to investigate the direction of forces on the tile. This was crucial to the structural performance. Results show that forces are always away from the plasma and into the supporting CSC which limits the tile stresses since the tile is effective supported off it base and not the thin sections at the T-Bar.





As a result of Toroidal Peak, there is a resistive redistribution of current primary in the low resistance section of the IBDhs. When crossed with the radial PF this will cause some tiles to experience forces into the wall and others away from the wall. The IBDhs current toroidal distribution is driven more by the TPF than by the assumed toroidal angle between strike in and out. Peak toroidal current in IBDhs is 27.3 kA of which 4.9 kA flows thru the ATJ tile assuming a resistive distribution between tile and casing.



Results for Individual Tiles:

IBDhs





IBDvs







CSAS











CSFW









Summary

The tables below summarize the peak temperatures and stresses from the analysis for the given heat load:

[image: ]

The Center Stack Tiles for the NSTX-CSU program are shown to be capable of withstanding the original GRD heat flux requirements using the prescribed ATJ graphite with Tensile Strength of 26 MPa and Compressive Strength of 66 MPa. Results are based on average Tile surface heating. The IBDhs shows a hot spot at the corner of the tile closest to the X-point due to assumed heating from both faces which may be (or may not be) conservative.

The tile mounting scheme, consisting of T-bar supports for the CS Angle Section (CSAS) Tiles and the Inboard Divertor Horizontal (IBDhs) and Vertical (IBDvs) Tiles, and the tray support for the Center Stack First Wall (CSFW) Tiles is adequate to support the tiles against the anticipated thermal, eddy current and halo current loads with acceptable bolt loads. The load paths are such as to dump the net tile forces from Halo and Eddy Currents directly into the CSC. The supports offer flexible constraint on the tile thermal expansion without carrying significant load.

To repeat what was said earlier, the EM load direction is premised on the poloidal flowing halo current’s interaction with the TF field always results in tile forces which are away from the plasma, regardless of the plasma current and TF field directions as observed in NSTX operation. While the interaction of toroidal flowing halo currents, which will be in both directions due to the Toroidal Peaking, with the PF field produce forces both toward and away from the plasma, they are shown to be small relative to the poloidal current forces and result in net forces away from the plasma. If net forces were reversed, halo currents from a 2 MA plasma may not be tolerable due to high tensile stresses in the ATJ.

The analysis shows that the inclusion of Grafoil under the CSAS, IBDvs and IBDhs combined with the active cooling will significantly limit the thermal ratcheting of the tiles whether Li coated (with assumed emissivity of 0.3) or uncoated (with assumed emissivity of 0.7). The active cooling also offers adequate protection of the neighboring 
PF and OH coils and reduces the heating of the CS Casing. The flow rate and back pressure are high enough to avoid boiling of the water.

The Grafoil is shown to be structural compliant to allow relatively free thermal expansion of the tiles provided the bolts are only lightly preloaded and do not over compress the Grafoil.

IBhs and IBDvs (top) and CSAS and CSFW (bot) Thermal and EM Stresses are within acceptable limits for ATJ graphite.
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GRD Requirements – Heat Flux

Heat Flux applied to Plasma Facing Surface of Tiles

For IBDhs this includes vertical surface
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d. The CSC PEC tiles shall consist of carbon-based materials designed to absorb the heat,
particle, and radiation flux from the plasma and heating systems, to minimize the influx
of impurities to the plasma, and to withstand the electromagnetic forces associated with

plasma disruption.

. Al CSC PFCs and their mounting hardware shall be designed to withstand the heat loads
due to plasma operation with Single Null (SN) and Double Null (DN) divertor
configurations due to the total heating power available (seetion 2.3) for two cases as
indicated . One case defines the peak heat flux based on maximum available power in the
SN configuration while the other case defines the peak energy deposition based the DN
configuration with a pulse duration equal to the maximum plasma flat top time of 5s.
Repetition period shall be 1200s in each case. The CSC PFCs shall be designed based on
the DN requirement. For the SN case the PFCs shall withstand the specified heat flux for
whatever duration is allowable based on the choice of materials, geometry, and cooling
driven by the DN requirement.

Table 3-2 - Heat Flux and Power Flux Width on PFCs

CSFW IBDAS.
IBDVS

Single Null Divertor, Tp,.= as
determined to be allowable

Average Heat Flux q,,, [MW/nr’] . 40 93
Peak Heat Flux qgy [MW/m’] : 63 155
Power Flux Width 7. [m] a 03 03

Double Null Divertor, Tpu=50s
Average Heat Flux q,,, [MW/nr’] . 16 52
Peak Heat Flux g, [MW/m’] ) 25 33
Power Flux Width 7. [m] a 03 03

Heat flux on the divertors shall be assumed to impinge over a region beginning at the
strike point and ending at a distance of equal to the power flux width (1) given in Table
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Requirements – EM Loads

Eddy Currents

SPARK Scan of above disruptions yielded

Max dB/dt = 520 T/s Radial, 460 T/s Vertical

at diverter
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Requirements – EM Loads
 Eddy Currents





SPARK Scan of above disruptions yielded

Max dB/dt  = 520 T/s Radial, 460 T/s Vertical

at diverter
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Table 2-2 - Plasma Disruption Specifications

Centered

Offset,
Midplane

Offset.
Inboard

Center of plasma
(e2) [m]

09344

0.5996

0.7280

0.0000

0.0000

-1.1376

Minor radius of
plasma [m]

0.5696

0.2848

02848

Curvent Quench

Tnitial plasma

current [MA]

Linear current

derivative [MA/s]

Tnitial plasma
current

Final plasma current

[MA]

Linear current

derivative [MA/s]

200

Halo curvent [MA]

35%=

T00KA

Halo current entry
point (r.2) [m]

0.8302

-1.5441

Halo current exit
point (r.2) [m]

1.1813

-1.2348

& Gnrown om0
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dB/dt scan from Plasma at Horizontal 

Inboard Diverter During Disruptions

Based on 2 MA for NSTX CSU
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Max Radial dB/dt 

520 T/s

Max Vertical dB/dt 

460 T/s
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dB/dt scan from Plasma at Horizontal Inboard Diverter During Disruptions





Based on 2 MA for NSTX CSU
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Max Radial dB/dt 
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Max Vertical dB/dt 
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Requirements – Peak Background Fields

Coil R (center) dR Z (center) dZ nR nZ Turns Fill

  (cm) (cm) (cm) (cm) 0.0000

OH (half-plane) 24.2083 6.9340 106.0400 212.0800 4.0 110 442 0.7013

PF1a 31.9300 5.9268 159.0600 46.3533 4.0 16 64 0.8594

PF1b 40.0380 3.3600 180.4200 18.1167 2.0 16 32 0.7938

PF1c 55.0520 3.7258 181.3600 16.6379 2.0 10 20 0.8560

PF2a 79.9998 16.2712 193.3473 6.7970 7.0 2 14 0.7409

PF2b 79.9998 16.2712 185.2600 6.7970 7.0 2 14 0.7409

PF3a 149.4460 18.6436 163.3474 6.7970 7.5 2 15 0.6928

PF3b 149.4460 18.6436 155.2600 6.7970 7.5 2 15 0.6928

PF4b 179.4612 9.1542 80.7212 6.7970 2.0 4 8 0.7525

PF4c 180.6473 11.5265 88.8086 6.7970 4.5 2 9 0.6723

PF5a 201.2798 13.5331 65.2069 6.8580 6.0 2 12 0.7733

PF5b 201.2798 13.5331 57.8002 6.8580 6.0 2 12 0.7733

PF Configuration from NSTX_CS_Upgrade_100504.xls

Scan of 96 scenarios in same spreadsheet used to establish max fields:

Max Br = 0.5 T

Max Bz = -0.57 T

Avg Btf  ~ 2 T at IBDhs 

Max Btf ~ 3 T at CS

Btf =  1T at 0.9344m 
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Requirements – Peak Background Fields



PF Configuration from NSTX_CS_Upgrade_100504.xls

Scan of 96 scenarios in same spreadsheet used to establish max fields:



Max Br = 0.5 T

Max Bz = -0.57 T



Avg Btf  ~ 2 T at IBDhs 

Max Btf ~ 3 T at CS

                

Btf =  1T at 0.9344m 
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Requirements - Halo

Analysis 

Priority 

[1=high]

Scenario 

index and 

analysis 

sequence

Scenario 

category

Disruption scenario description

Initial Ip 

[MA]

Initial 

position 

index

Final 

position 

index

Drift 

time [s]

Quench 

time [s]

Ip quench 

rate 

[GA/s]

Halo 

fraction 

f

h

1 1 1 Centered disruption, fast quench 2 1 1 0.01 0.001 2 0

1 2 2 Initiated shifted to CS, fast quench, no halo 2 2 2 0.01 0.001 2 0

1 6 2 Inward drift to CS, very slow quench, halo 2 1 2 0.01 0.1 0.02 0.2

1 3 3 Initiated shifted down to inboard, fast quench, no halo 2 3 3 0.01 0.001 2 0

1 7 3 Vertical drift to inboard, very slow quench, halo 2 1 3 0.01 0.1 0.02 0.35

1 4 4 Initiated shifted down to middle, fast quench, no halo 2 4 4 0.01 0.001 2 0

1 8 4 Vertical drift to middle, very slow quench, halo 2 1 4 0.01 0.1 0.02 0.35

1 5 5 Initiated shifted down to outboard, fast quench, no halo 2 5 5 0.01 0.001 2 0

1 9 5 Vertical drift to outboard, very slow quench, halo 2 1 5 0.01 0.1 0.02 0.35

Excepted from

Disruption_scenario_currents_v2.xlsx

For IBDhs, 

Halo = 

35 kA  

per 15 deg Tile

( 2MA/24Tiles*.35HCF*1.2TPF)

Halo current assumed to take longest path

across TF for worse case loading 

unless justification can be made not to.
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ATJ Graphite Properties

ATJ very brittle – Yield strength close to 

Ultimate

Representative Tensile Stress-Strain Curve from

GRAPHITE DESIGN HANDBOOK

GA 1988 (for 2020 graphite)
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1st Pulse Heat Flux/Pulse Length Capability
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Tile Ratcheted Temperatures
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No Ratcheting on Water Cooled Tiles

Only on Radiation Cooled CSFW

First Pulse Surface Temperatures
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Water in Cooling Loops stays below ~100 C

Neighboring Case Temperature Higher

IBDhs Flange Cooling

IBDhs Flange Cooling Tube Surface
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Halo Currents and Force Directions in the CS

• The halo currents and associated Lorentz forces & directions are based on the 

following:

– Halo Currents are resistively distributed.

– Halo Currents are predominantly poloidal

• Studies show this to be true even with large toroidal peaking (TPF) with in and out strike points 

at different toroidal angles

• The exception is near the strike points where current quickly redistributes

– The tiles are assumed shorted to each other (at least locally) by plasma filling the gaps

• It is estimated that at a temperature of 10ev, the plasma electrical resistivity is very close to ATJ 

graphite (thou it may not penetrate very deep into the gap)

– As a result of the above, there is current sharing between the tiles and CS casing based on 

the relative resistance

• Per Stefan Gerhardt, the interaction of the halo currents with the TF is always 

such as to press tiles toward VV wall or CS Casing

– This is this is true even when the TF direction is opposite the plasma current.

• The interaction with the PF should result in some forces pulling tiles away 

from the wall where there is a component of halo current flowing in opposite 

toroidal directions (see next slide)


Microsoft_Office_PowerPoint_Slide14.sldx
Halo Currents and Force Directions in the CS

The halo currents and associated Lorentz forces & directions are based on the following:

Halo Currents are resistively distributed.

Halo Currents are predominantly poloidal

Studies show this to be true even with large toroidal peaking (TPF) with in and out strike points at different toroidal angles

The exception is near the strike points where current quickly redistributes

The tiles are assumed shorted to each other (at least locally) by plasma filling the gaps

It is estimated that at a temperature of 10ev, the plasma electrical resistivity is very close to ATJ graphite (thou it may not penetrate very deep into the gap)

As a result of the above, there is current sharing between the tiles and CS casing based on the relative resistance

Per Stefan Gerhardt, the interaction of the halo currents with the TF is always such as to press tiles toward VV wall or CS Casing

This is this is true even when the TF direction is opposite the plasma current.

The interaction with the PF should result in some forces pulling tiles away from the wall where there is a component of halo current flowing in opposite toroidal directions (see next slide)
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Halo Current Distribution with TPF=1.5

Strike on IBDhs
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Halo Current Distribution with TPF=1.5
Strike on IBDhs







Current Direction is fairly poloidal in IBDvs, CSAS and CSFW but has sizable toroidal currents in both directions due to Halo Toroidal Peaking Factor
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Current Sharing and 

Tile Forces

• Tiles share less than 

30% of Halo currents 

based on relative 

resistance

• Forces due to the 

toroidal flow of halo 

currents are small 

compared to the 

poloidal component.

• Net Forces will remain 

into the VV/CS

Relative Resitivity and Halo Current Sharing in CS Tiles/Case

Res_inc 1.3 microOhm-m Iplas 2 Ma

Res_atj 11.7 microOhm-m HCF 0.35

TPF 1.2

CSFW CSAS IBDvs IBDhs

ntiles tor 24 24 24 24

t_inc 0.25 1.27 0.25 1.00 in

t_atj 0.67 0.85 0.94 2.00 in

I_atj/I_tot 0.23 0.07 0.29 0.18

I_tot, KA 35 35 35 35

I_atj, KA 8.01 2.43 10.31 6.36

Force Estimate Per Tile (Ipol x Btor, into VV)

CSFW CSAS IBDvs IBDhs

Ipol 8.01 2.43 10.31 6.36 kA

Btf 2.97 2.61 2.34 1.92 T

tile pol len 0.15 0.29 0.15 0.17 m

F 3565.3 1841.3 3613.8 2081.7 N

801.5 413.9 812.4 468.0 lbs

Surf Area 0.0123622 0.027134 0.015708 0.021612 m2

Equiv Pres 288405.28 67858.61 230064.4 96319.05 Pa

Force Estimate Per Tile (Itor x Bpol, into or out of  VV)

CSFW CSAS IBDvs IBDhs

Itor, model 11.50 10.00 3.00 27.30

Itor, tile 2.63 0.69 0.88 4.96 kA

Bpf 0.57 0.57 0.57 0.50 T

tile tor len 0.082 0.094 0.105 0.127 m

F 123.6 37.0 52.8 315.5 N

27.8 8.3 11.9 70.9 lbs
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Current Sharing and Tile Forces

Tiles share less than 30% of Halo currents based on relative resistance

Forces due to the toroidal flow of halo currents are small compared to the poloidal component.

Net Forces will remain into the VV/CS
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Relative Resitivity and Halo Current Sharing in CS Tiles/Case
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Temperature Response
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Temperature Response
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With  Grafoil

Tile presses on compliant 

grafoil

Tbar clamps tile but has 

clearance to Flange
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With  Grafoil

Tile presses on compliant grafoil



Tbar clamps tile but has clearance to Flange
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Hot spot from 

thinning at bolt 

holes
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Hot spot from thinning at bolt holes
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Max Tensile Stress 

S1 < 7.0 MPa vs 26 MPa Ultimate*

*ATJ stated value. Testing suggest limits may be less
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Max Tensile Stress 

S1 < 7.0 MPa vs 26 MPa Ultimate*

*ATJ stated value. Testing suggest limits may be less
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Max (absolute) Compressive Stress 

S3 < 16.3 MPa vs 66 MPa Ultimate
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Max (absolute) Compressive Stress 

S3 < 16.3 MPa vs 66 MPa Ultimate
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Max Tensile Stress 

S1 < 8.18 MPa vs 26 MPa Ultimate*
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Max Tensile Stress 

S1 < 8.18 MPa vs 26 MPa Ultimate*
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Max (absolute) Compressive Stress 

S3 < 10.7 MPa vs 66 MPa Ultimate


Microsoft_Office_PowerPoint_Slide25.sldx




Max (absolute) Compressive Stress 

S3 < 10.7 MPa vs 66 MPa Ultimate
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Max deflections at 

unsupported end.

Grafoil compresses only 

~4% of thickness
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Max deflections at unsupported end.



Grafoil compresses only ~4% of thickness
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Summary of Tile Thermal Structural Response

Heat Flux 

for 5s

Ratcheted 

Temperatur

e

Peak Tensile 

Principal  

Stress, S1

Peak Compress 

Principal Stress, 

S3

Max 

Deflection

mw/m2 C MPa mm

IBDhs, surface 5.0 1062 15.6 -58.0 0.6

  Hot Spot at Corner 1512

IBDvs, surface 1.6 425 7.0 -16.3 0.1

  Hot Spot at Hole 560

CSAS, surface 1.6 327 8.2 -10.7 0.2

  Hot Spot at Hole 417

CSFW 0.2 260 1.6 -6.5 0.01
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Axisymmetric Thermal Model of CS Tiles and Casing

Cooling

Vertical

Section 

ProE Model 

Showing 

Cooling Tubes

Cooling

Horizontal

Section 

Expanded View


