

College W&M

Columbia U

**General Atomics** 

Johns Hopkins U

**Nova Photonics** 

**Old Dominion U** 

**New York U** 

**Princeton U** 

Think Tank, Inc.

Purdue U

UC Davis

**UC Irvine** 

**U** Colorado

U Maryland U Rochester

**U** Washington

**U Wisconsin** 

**U Illinois** 

UCLA

UCSD

CompX

INEL

LANL

LLNL

MIT

ORNL

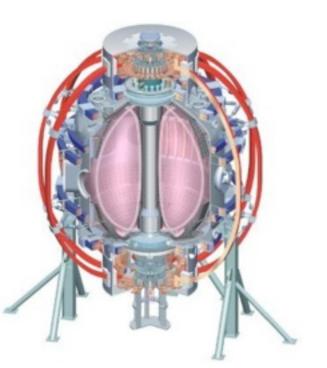
PPPL

PSI

**SNL** 

Lodestar

**Colorado Sch Mines** 


Supported by

# **NSTX CSU Upgrade Overview**

#### Larry Dudek

and the NSTX Upgrade Team

#### NSTX Upgrade Final Design Review LSB B-318 June 22-24, 2011





Culham Sci Ctr **U St. Andrews** York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U NIFS Niigata U U Tokyo JAEA Hebrew U loffe Inst **RRC Kurchatov Inst** TRINITI **KBSI** KAIST POSTECH ASIPP ENEA, Frascati CEA, Cadarache IPP, Jülich **IPP.** Garching ASCR, Czech Rep **U** Quebec

Office of

U.S. DEPARTMENT OF

ENERGY Science

# Outline

- General Requirements
- Center Stack Upgrade Jobs
- FDR Deliverables
- Center Stack Upgrade Scope
- FDR Risks
- Chit Resolution
- Schedule
- Conclusion



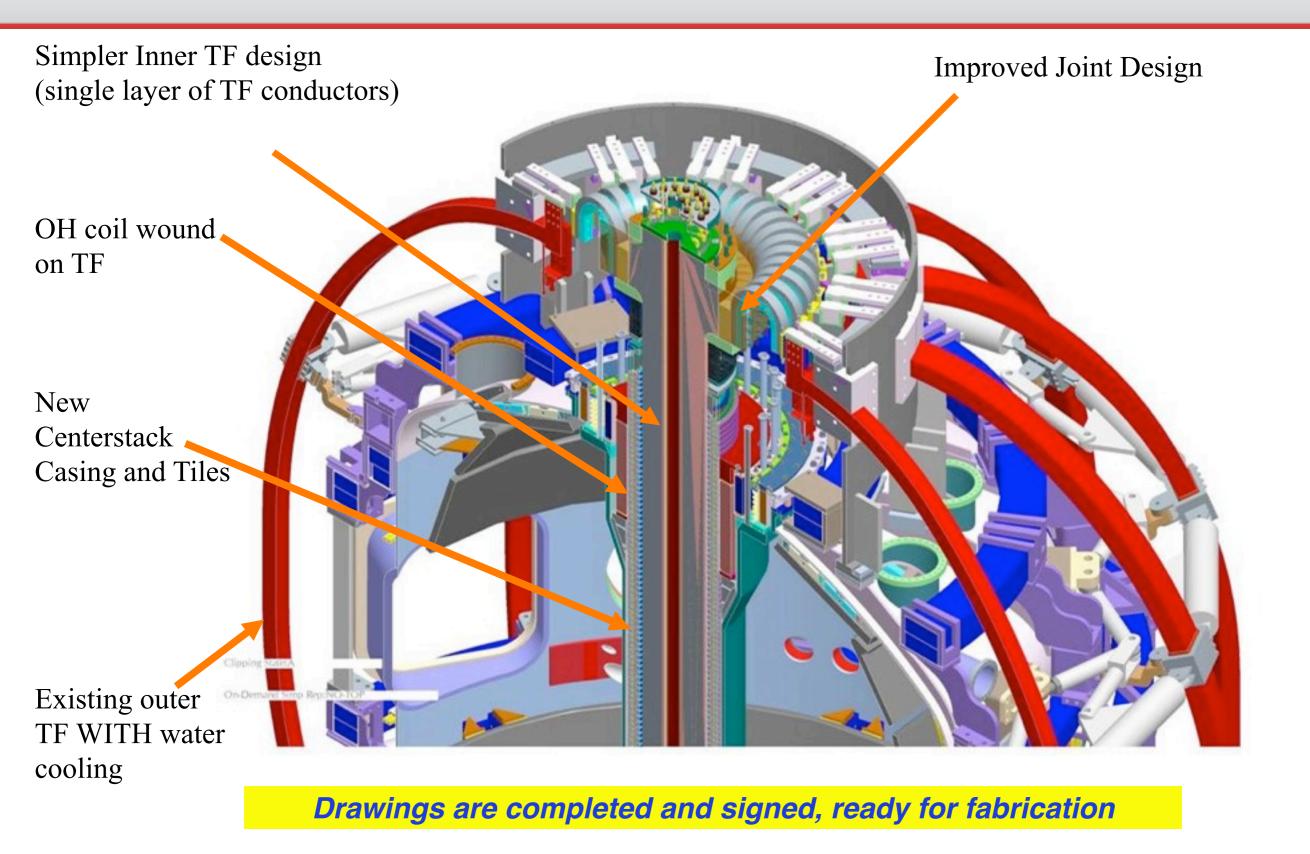
- Program Physics Goals
  - Better understand causes of ST transport and scaling to next step devices
  - Address ST start-up, sustainment and boundary issues
- Centerstack Upgrade Requirements
  - Toroidal magnetic field at the major radius R0 of 1 Tesla (T) compared to 0.6T in the original NSTX
  - Plasma current Ip up to 2 Mega-Amp (MA) (presently 1MA rating)
  - Increase Pulse length from 0.5 to 5.0 seconds
  - Plasma facing components, internal hardware (PP, OBD), CSC, VV, and RF antennae shall be designed to withstand forces due to plasma disruption.



### **Center Stack Jobs**

| DESCRIPTION                                | Cog         | ETC from<br>6/1 (\$K) |
|--------------------------------------------|-------------|-----------------------|
| Job: 3400 - Gas Delivery System Mods       | Blanchard   | 67                    |
| Job: 1300 - Center Stack                   | Chrzanowski | 718                   |
| Job: 1301 - Outer TF Coils                 | Chrzanowski | 310                   |
| Job: 1302 - Center Stack Assembly          | Chrzanowski | 984                   |
| Job: 1304 - Inner TF Bundle (Ds/Fab)       | Chrzanowski | 1,967                 |
| Job: 1305 - OHMIC Heating Coil (OH)        | Chrzanowski | 3,178                 |
| Job: 1306 - Inner PF Coils                 | Chrzanowski | 519                   |
| Job: 1307 - CS Casing Assembly             | Chrzanowski | 726                   |
| Job: 1310 - CSU Magnet Systems             | Chrzanowski | -                     |
| Job: 3200 - Water Cooling System Mods      | Denault     | 152                   |
| Job: 5200 - DCPS                           | Hatcher     | 2,106                 |
| Job: 4100 - Center Stack Diagnostics       | Kaita       | 677                   |
| Job: 1303 - TF Joint Test Stand&Test       | Kozub       | 4                     |
| Job: 4500 - MPTS VV Modification           | Labik       | 579                   |
| Job: 3300 - Bakeout System Mods for CSU    | Raki        | 73                    |
| Job: 5000 - CSU Power Systems              | Raki        | 4,670                 |
| Job: 6100 - Control Sys Data Acquisition   | Sichta      | 816                   |
| Job: 1200 - Structures and Supports        | Smith       | 1,722                 |
| Job: 5501 - Coil Bus Runs-SMITH            | Smith       | 1,159                 |
| Job: 1000 - CSU Analytical Support         | Titus       | 670                   |
| Job: 1002 -Passive Plate Analysis &Upgrade | Titus       | 47                    |
| Job: 2300 - ECH Analysis-                  | Titus       | 15                    |
| Job: 1001 - CS Plasma Facing Components    | Tresemer    | 1,332                 |
| Job: 8200 - CS & Coil Sprt Struc Install   | Viola       | 9,545                 |




# **FDR Deliverables**

| Group                              | Owner                    | SubGroup             | Required | Prepared | Comment                                   |
|------------------------------------|--------------------------|----------------------|----------|----------|-------------------------------------------|
| Calculations & analyses            | Titus                    |                      | 49       | 43       |                                           |
| PFC's (ca 1001)                    | Tresemer                 | Part Files           | 66       | 66       |                                           |
| PFC's (ca 1001)                    | Tresemer                 | Drawings             | 105      | 63       |                                           |
| PFC's (ca 1001)                    | Tresemer                 | R&D Tasks            | 1        | 0        |                                           |
| PFC's (ca 1001)                    | Tresemer                 | Updated SRD          | 1        | 1        |                                           |
| Center stack (ca 13xx)             | Chrzanowski              | Drawings             | 175      | 173      | Critical Path                             |
| Center stack (ca 13xx)             | Chrzanowski              | R&D Tasks            | 16       | 15       | Critical Path                             |
| Center stack (ca 13xx)             | Chrzanowski              | Updated SRD          | 1        | 0        |                                           |
| Supports (ca 12xx)                 | Smith                    | Drawings/Models      | 106      | 106      |                                           |
| Supports (ca 12xx)                 | Smith                    | R&D Tasks            | 0        | 0        |                                           |
| Supports (ca 12xx)                 | Smith                    | Updated SRD          | 1        | 1        |                                           |
| Internals ie Passive Plates (ca ?) | Atnafu                   | Drawings/Models      | 2        | 0        |                                           |
| Auxiliary Systems (ca 3XXX)        | Blanchard                | Gas Injection        | 6        | 2        |                                           |
| Auxiliary Systems (ca 3XXX)        | Denault                  | Water System         | 3        | 1        |                                           |
| Auxiliary Systems (ca 3XXX)        | <b>Denault/Blanchard</b> | <b>R&amp;D</b> Tasks | 1        | 1        |                                           |
| Diagnostics (ca 4100)              | Kaita                    | Drawings             | 8        | 8        |                                           |
| MPTS VV interface (ca 4500)        | Labik                    | Drawings/Models      | 60       | 45       | At PDR Level, optimizatior<br>in progress |
| Power systems (ca 5000)            | Raki                     | Drawings             | 45       | 43       |                                           |
| Power systems (ca 5000)            | Raki                     | Updated SRD          | 1        | 1        |                                           |
| Coil Bus (ca 5500)                 | Smith                    | Drawings/Models      | 187      | 187      |                                           |
| Controls (ca 6100)                 | Sichta                   | Drawings/Models      | 35       | 15       |                                           |
| Controls (ca 6100)                 | Sichta                   | R&D Tasks            | 1        | 1        |                                           |
|                                    |                          |                      | 870      | 771      |                                           |

 ~90% of the Center Stack Design final design documents are ready for approval upon completion of the FDR

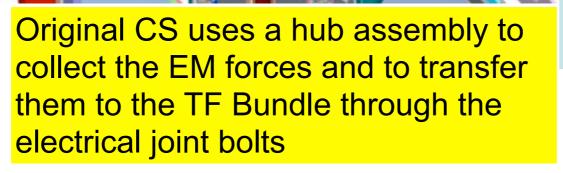
• Critical Path design work is 96% complete

#### CS Upgrade Scope Machine Core / Coils (Chrzanowski)





# Features of the New Center Stack


Cu alloy flex wire EDM from plate – tested to 300,000 cycles

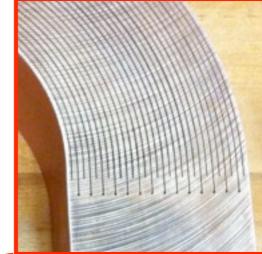
Hysol 3561/2039 and S2 Glas torque reaction disc keyed directly into turns for direct torque restraint path.

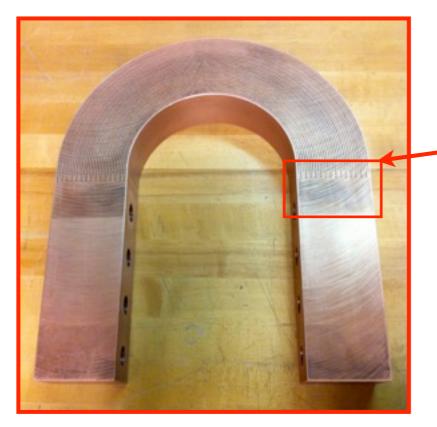
Turns bonded to create integral hubs

OH preload mechanism

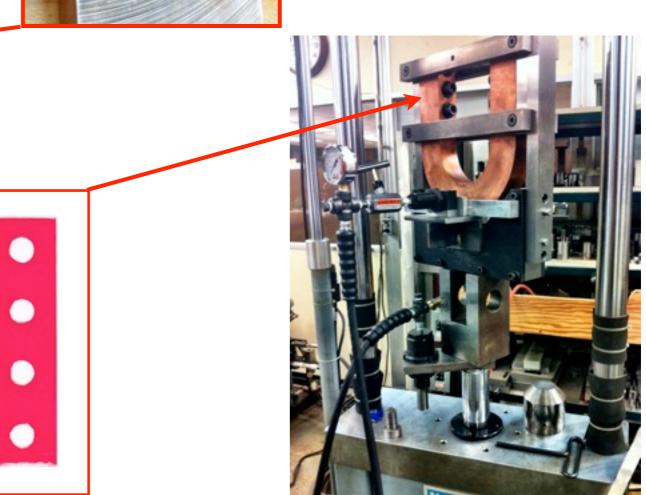
OH coil wound in place



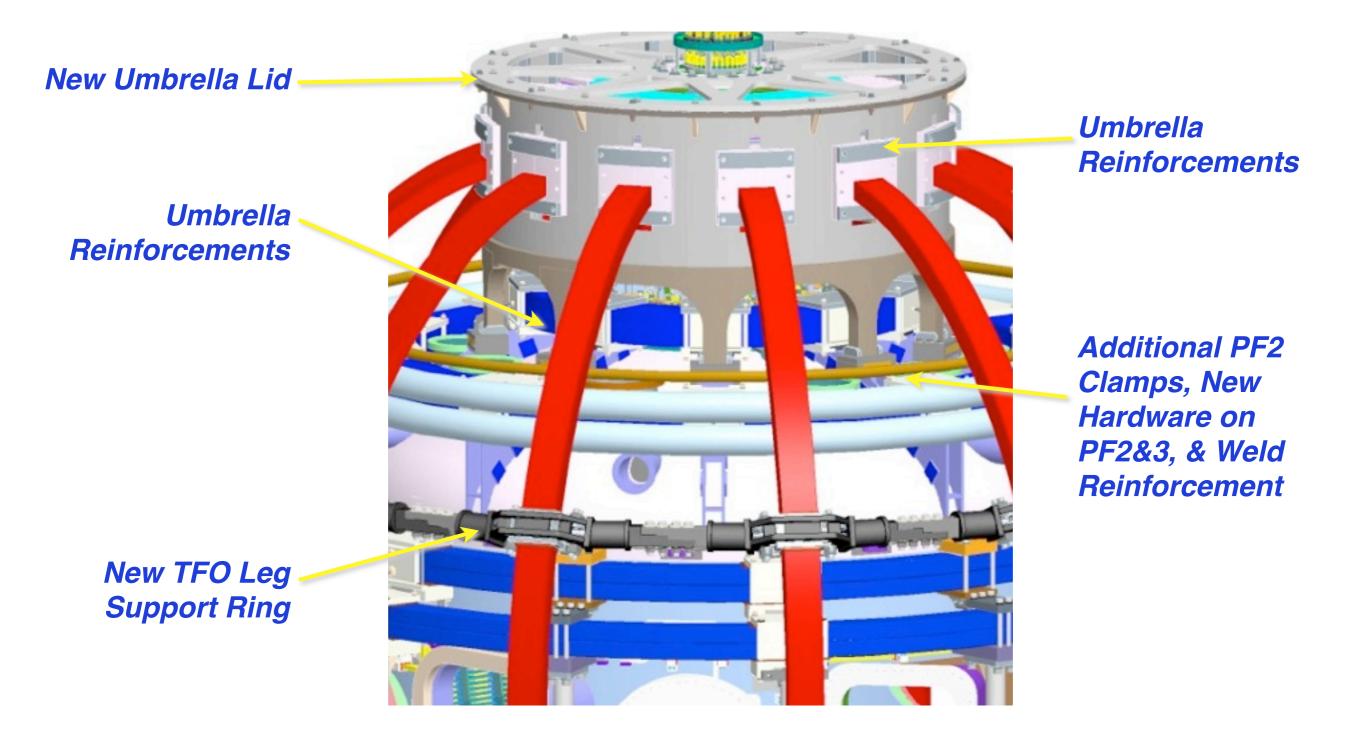

### Features of design:


• Welded extensions of C18150 to TF conductors provides joint-free regions for current streamlines to transition from vertical to horizontal.

- Hot spot where current hugs the corner does not affect the elec. Joint.
- HS alloy permits Inconel studs & Supenuts to preload the joints to 5.1 ksi. Maintains 2.0 ksi under full load.
- Original B\*R is 0.51; field at TF joint is 5.2T at r=0.098 m.
- Upgrade B\*R=0.934
- This design moves bolted joint interface from 4.7 T region (r=0.2 m) at TF sfc. to 3.3 T (r=.28m.) region on bottom, and to 2.22 (r=.42m) at top. (37 and 58% reduction in fields at joints)
- Increases contact areas for joints to 12.6 sq. in. (vs 3.4 sq.in for existing) (J=10.2 kA/in<sup>2</sup> vs 21.3 kA/ in<sup>2</sup> for existing).
- Joint resistance is reduced by factor of ~4


### **Centerstack R&D - TF Flex Connector**

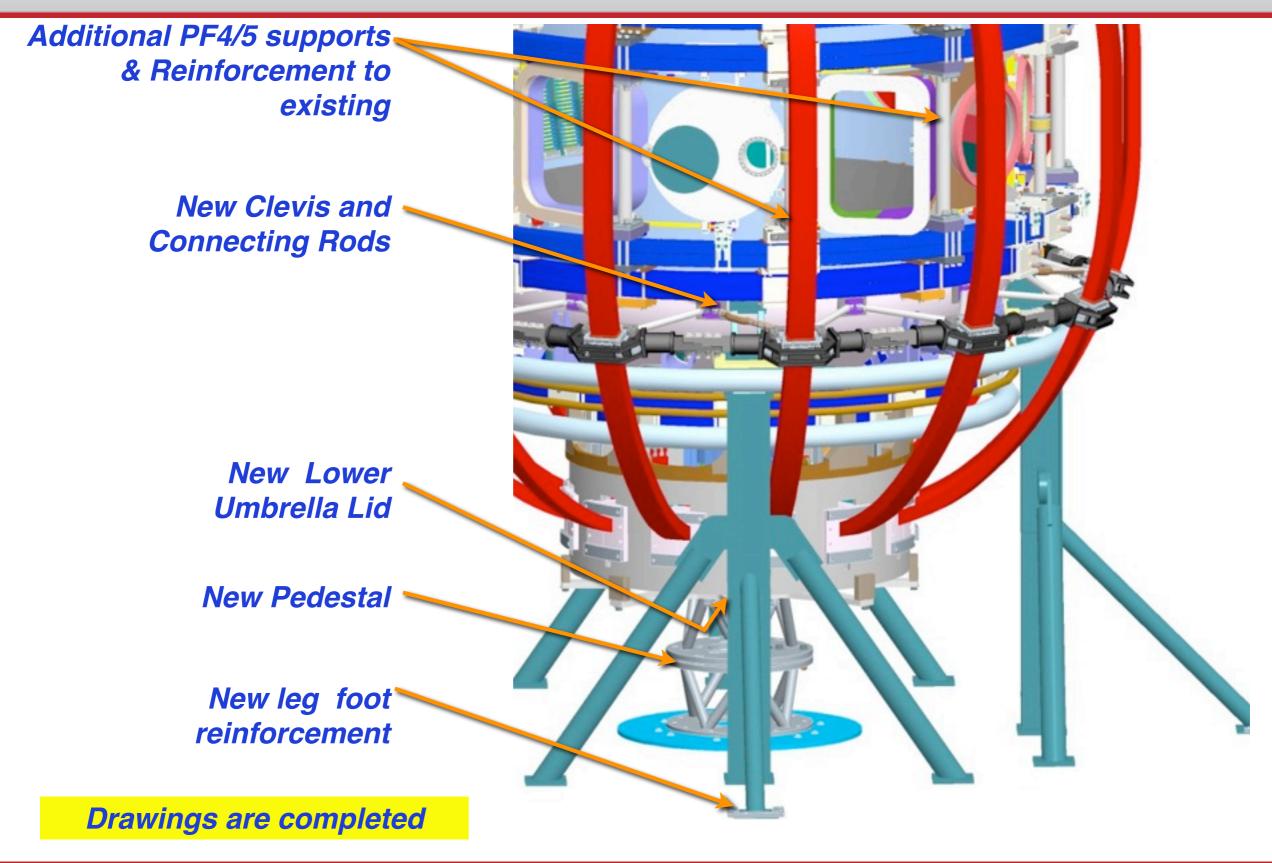
Successfully tested to 300,000 full stroke cycles Design Requirement = 60,000 cycles






Fuji Paper pressure tests indicate >1500 psi over the entire joint surface




### **Structural Reinforcements (Smith)**



**Drawings are completed** 



### **Structural Support Modifications**





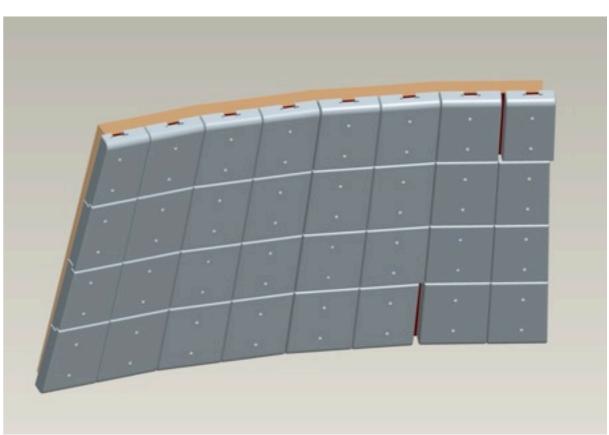
# **Electrical, Controls and Diagnostics**

- Power Feed Upgrades (Ramakrishnan)
  - Upgrade TF power supply to support full field capability of ~1T. (At ~1T, ~2.5s flattop every 20 min and up to ~5 s every 40 min)
    - Existing cables will be reconnected for TF use. Thus there will be a total of 8 cables per pole for TF.
    - Requires procurement, installation and commissioning of some additional components (CLR's, DCCTs, etc)
  - Drawings are complete
- Controls (Sichta)
  - ~3.5x longer Pulse Length drives real-time control, data acquisition, analysis, networking, and storage.
- Diagnostics (Kaita, Labik)
  - Relocation of Centerstack Magnetic diagnostics to new home
    - Rogowski Coils
    - Mirnov Coils
    - Flux Loops
    - Langmuir Probes
    - Thermocouples
  - Designs use existing drawings
  - Relocation of MPTS to account for eclipsed view of new CS (new)
    - Upgrade project scope includes the VV interface which recently passed PDR, FDR is planned for August
    - VV port design is complete and is now being optimized for RWM impact

# **Auxiliary Systems**

- Gas Injection Systems (Blanchard)
  - Relocate existing center stack gas injection system to the new center stack
  - Design is complete
- Coil Cooling water modifications (Denault)
  - Restoring of cooling to the outer TF legs for upgraded TF.
  - Reconnect cooling to the TF inner legs, OH and PF coils
  - Provide cooling for the coil buswork




# **DCPS and Analysis**

- Digital Coil Protection System (Hatcher)
  - System protects the coils and supports from EM load combinations that were not employed in the design (vs Power Supply limits)
  - Completed a successful CDR Mar 2011
  - PDR held in June 2011, FDR to follow in 2012
- Analysis (Titus)
  - A 136 page executive summary is being provided covering the design calculations performed to support the Final Design
  - Supports the design, based on operational limits
  - Operational Limits
    - Original GRD required the use of the power supply (designed for TFTR) limits as the design criteria
    - Early on it was realized it was impractical, therefore the GRD requirements were reduced to a set of 96 operating scenarios described in the Design Point Spreadsheet.



### **Passive Plates**

- Passive Plate Upgrade (Realized risk)
  - Disruption analysis identified a weakness in the Cu Passive Plates during one of the disruption scenarios - ~ 2x allowable stress (A check by another analyst indicates the max stresses are ~50% allowables)
  - Now in the process of reconciling the differences (Skin effects, fields in model, modeling detail, 3d vs 2d Opera)
  - Several concepts have been considered, simplest and least invasive to the machine would be to increase the plate thickness (up to 2x current thickness, 0.5" > 1")
  - Between the FDR and Lehman review the differences will be reconciled
  - Cost impact would be ~ \$1,200K
  - Schedule impact for the overall outage = nil
  - The cost and schedule are being added as a planning package





# **FDR Risks**

| Owner    | Numb<br>er | Affe<br>cted<br>Job | Job Title                                                       | Risk Description                                                                                                                                                         | Mitigation Plan<br>(& job where budgeted)                                  | Current Status                                                            |
|----------|------------|---------------------|-----------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|---------------------------------------------------------------------------|
| Tresemer | 1001e      | 1001                | Centerstack<br>Plasma Facing<br>Components                      | May be able to use ATJ on CS VS instead of 2D CFC. Depends on fastening needs                                                                                            |                                                                            | Retired - Adopted<br>ATJ for cost savings                                 |
| Titus    | 8200e      | 8200                |                                                                 | Passive Plate Tiles/hardware need<br>upgrading: Possibly ~3500 tiles,<br>70000 in^3, replacing with 2D CFC                                                               | Finalize disruption and thermal load analysis by FDR.                      | Retired - Estimate<br>for oversize plates<br>is being added to<br>project |
| Titus    | 1000a      | 1000                | Centerstack<br>Analytical Support                               | Analysis indicates a significant<br>component needs upgrade that<br>previously hasn't been identified                                                                    | Maintain upgrades of the model and keep ahead of the scenario changes      | Will be closed at completion of FDR                                       |
| Titus    | 1000b      | 1000                | Centerstack<br>Analytical Support                               | Analysis indicates a minor component<br>needs upgrade that previously hasn't<br>been identified - weld details, details<br>that are inconsistent with the Pro-E<br>model | Identify these areas early<br>with site surveys and as-<br>builts          | Will be closed at<br>completion of FDR                                    |
| Titus    | 1002a      | 1002                | Passive Plate<br>Analysis                                       | Halo and New/other disruption loads are beyond the capacity of the present hardware                                                                                      | Size modifications based on<br>calculations and implement                  | Estimate added to project                                                 |
| Titus    | 2300a      | 2300                | Miscellaneous<br>small appendage<br>reinforcements on<br>vessel | Upgrade may increase EM loads to<br>small items on vessel that may need<br>reinforcement, e.g. shutters, ECH,<br>brackets, diagnostic supports.                          | Design reinforcements as problem areas are identified.                     | Will be closed at<br>completion of FDR                                    |
| Sichta   | 6100c      | 6100                | Data Acquisition rate                                           | Data acquisition takes too long                                                                                                                                          | Upgrade additional data acq<br>systems and/or networks,<br>revise software | Retired - Design<br>meets requirements                                    |



| Comment or Concern                                                                                                                                                                                                                                                                                                                              | Owner | Response / Status                                                                                                                                                                                                                            |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Conduct a design review of the Digital Coil Protection system<br>with external reviewers to include consideration of the coil<br>current combinations, analysis of the loads and overall system<br>design including software and reliability requirements for all<br>components and instrumentation prior to the Final Design<br>Review in 2011 | Raki  | CLOSED: This is getting addressed in the FDR of the Digital Coil Protection by Ron Hatcher.                                                                                                                                                  |
| Include contingency quantities for components or equipment that<br>are long lead, critical for the first plasma milestone, critical for<br>subsequent operation on, and/or are one-of-a kind.                                                                                                                                                   | Raki  | CLOSED: The DC CLR for OH will be<br>ordered giving sufficient time for delivery.                                                                                                                                                            |
| Permit Power System installation as soon as possible to<br>minimize interferences, escalation of cost of materials, escalation<br>of cost of labor.                                                                                                                                                                                             | Raki  | Agree in principle. Will schedule within<br>schedule priority and available funding<br>allowing ample free float. Project Manager is<br>requested to allow installation activities to<br>begin six months earlier than currently<br>planned. |



#### **Chits: Analysis**

| Comment or Concern                                                                                                                                                                      | Owner  | Response / Status                                                                                                                                                                                                                                                                                                                                                                                                             |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Look at how many cycles have already been<br>performed on components -> get accurate count.<br>Then specify how many new/ extra cycles are<br>needed. Is it 30,000 / 3,000 more or 60k? | Titus  | IN PROGRESS: Fatigue qualification is based on analysis, and on in-service inspection. On new components for the upgrade we calculate fatigue life and check to make sure it complies with the NSTX structural criteria document. Analysis is also being done to qualify old components which are being added to a list. Parts will be monitored via a maintenance procedure                                                  |
| Write a design specification to collect and identify all design critical components which exceeded allowables that would guide DCPS design.                                             | Titus  | IN PROGRESS: Each detailed stress analysis section will outline the algorithm that will be incorporated into the DCPS. These will be listed by reference to the calculation in a design load specification which simply will be a list of algorithms and their calculation number sources. The calculations will be "living documents". A Protection and Algorithms document will be provided as a deliverable with the DCPS. |
| TF centre rod temperature close to flags is over<br>100C and may creep under stress. Consider<br>shaping the wedge/flag area to reduce peak<br>temperatures and stress.                 | Titus  | CLOSED: A Cyanate Ester blend was chosen for the epoxy system. This resin system with shear and tensile stress allowables high enough that local high spots in the TF corner are no longer a problem. (Ref: CTD Cyanate Ester Tests)                                                                                                                                                                                          |
| Divertor surfaces could get quite hot. Need thermal analysis of temp. in o-ring region to ensure o-rings wont melt, or spec. cooling requirement                                        | Brooks | CLOSED: Thermal analysis has been completed and it was determined that<br>additional cooling will be required in that area to protect the o-rings. Plans to<br>provide additional cooling have been added to the NSTXU design.                                                                                                                                                                                                |



17

Tuesday, June 21, 2011

#### **Chits: Center Stack Coils**

| Comment or Concern                                                                                                                                             | Owner | Response / Status                                                                                                                                                                                                                                                                                                                                                                                                  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Check strength and modulus of room temperature stycast (epoxy) for use on the TF castle (teeth).                                                               | JHC   | Concur. The TF teeth/crown structure will be<br>fabricated in-house with a wet layup process with<br>glass positioned circumferentially in structure to<br>provide maximum strength. Design was modified to<br>reduce stresses on the epoxy composite. The glass<br>layers are oriented for maximum strength. Stycast<br>will not be used, will be using Hysol 3561/2039 and<br>S2 Glas. Coupon will be performed. |
| Use of Superbolts on electrical connections is a new application.<br>Concern is related to thermal cycling of joint and braze/solder<br>creep under high load. | JHC   | CLOSED: Tested by cycling a simulated joint<br>equipped with Inconel Studs and SuperNuts - with<br>no loss in pretension. The Supernuts tension tests<br>completed using FUJI pressure sensitive paper                                                                                                                                                                                                             |
| Solenoid conductor braze joints - Finalize the manufacturing process for the OH conductor.                                                                     | JHC   | IN PROGRESS - Once conductor length can be verified, braze joint process will be finalized. Will be completed during conductor procurement                                                                                                                                                                                                                                                                         |

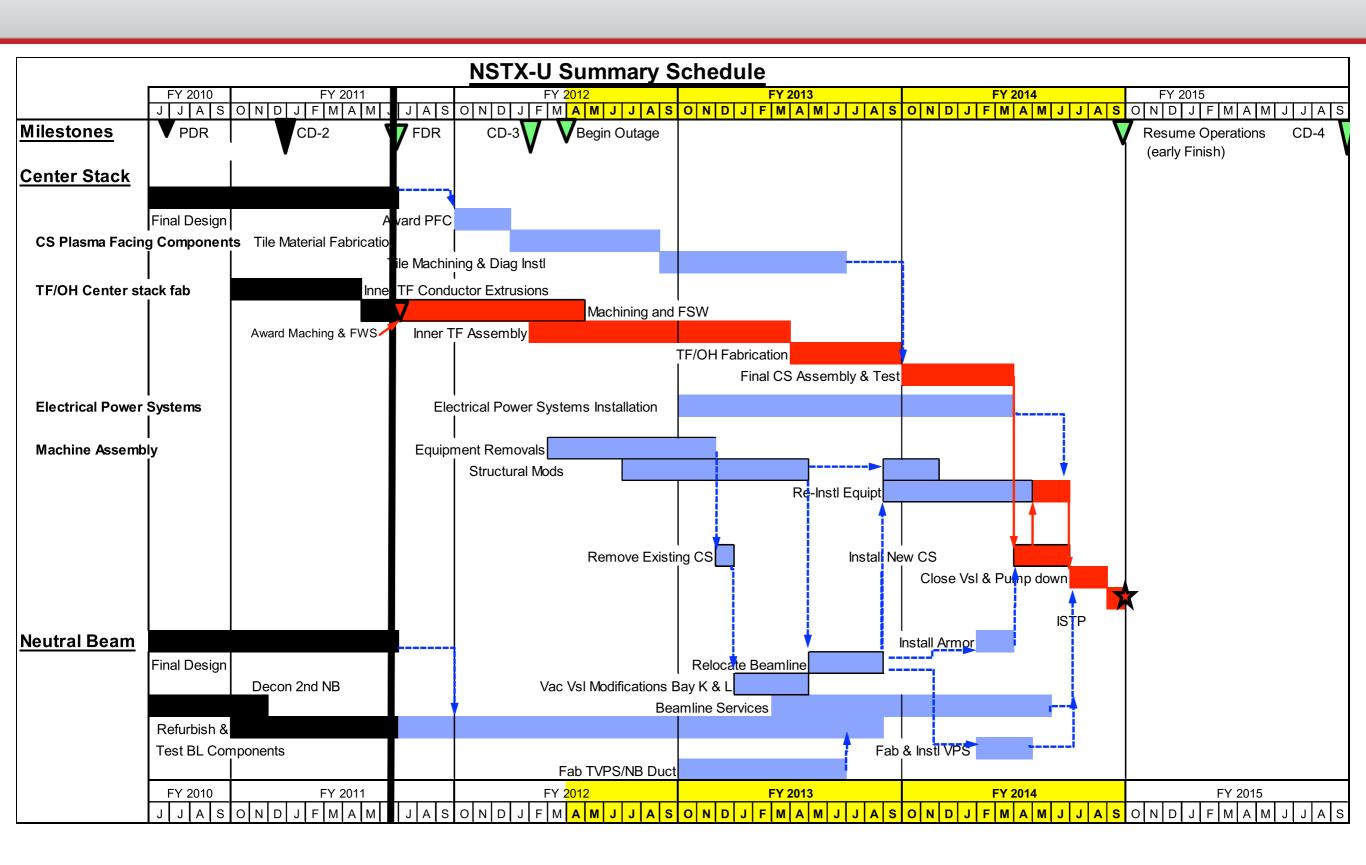


#### **Chits: Miscellaneous**

| Comment or Concern                                                                                                                                                                                                                                      | Owner | Response / Status                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| All NSTX components, including passive plates, etc. must be compatible with the design point. Any modifications which may be necessary must be included in the cost. See GRD 2.1.2.a                                                                    | Dudek | CLOSED: Risk was retired. The passive plate upgrade cost and schedule planning package is being added to the Center Stack upgrade plan.                                                                                                                                                                                                                                                                                                                                         |
| Convene external peer reviews / verification of key aspects of<br>the design and analysis, especially the TF joint electrical design<br>and the algorithms to be used for the digital coil protection<br>system, prior to the Final Design Review (FDR) | Dudek | CLOSED: External reviewers are included in the May 2011 peer review and the DCPS PDR to be held in June 2011.                                                                                                                                                                                                                                                                                                                                                                   |
| Develop a plan for operating instrumentation to monitor selected displacements, temperatures and joint resistance, prior to the FDR.                                                                                                                    | Dudek | CLOSED: The cost to monitor the new TF flex connection is not warranted.<br>The TF conductor flex joint design is much more robust than the existing joint on NSTX (>factor of 5). The flex connection was successfully tested to 300,000 full displacement and full load cycles and demonstrated excellent contact pressure using the super bolt fasteners. The joint will be inspected at regular maintenance intervals to monitor its performance under operating conditions |



# **Chits From Peer Review**


| Comment or Concern                                                                                                                                                                                                                                                        | Owner       | Response / Status                                                                                                                                                                                                                                                                                            |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Review the flags required for bakeout of vessel                                                                                                                                                                                                                           | Chrzanowski | Bakeout current is being increased. Flags<br>arrangement 3 flags at over 2 sq. in. which is<br>adequate for the 6,000 amp power supply rating.                                                                                                                                                               |
| Need to incorporate lift points into the centerstack design.                                                                                                                                                                                                              | Chrzanowski | Lifting is being accomplished in a manner consistent with the existing CS. Fixtures are being designed where needed for lifts.                                                                                                                                                                               |
| A resolution of increased production, and the introduction of additional G-10 and new insulating materials, what is the activation profile and post pulse? Has analysis been performed to evaluate if we will stay below a Cat 3 nuclear facility during NSTX operations? | Dudek       | CLOSED: The elements in the the new resin<br>system are no different than the elements in<br>CTD101K. Analysis by LP Ku early in the project<br>determined that there is no problem for the<br>existing hardware. Levine in the process of<br>preparing a revised10CFR830 part B letter for<br>distribution. |
| Ground the additional supports for the PF 4/5                                                                                                                                                                                                                             | Smith       | This is being added to the design                                                                                                                                                                                                                                                                            |



# **Chits from Peer Review**

| Comment or Concern                                                                                                                                                                    | Owner         | Response / Status                                                                                                                                                                                                                                                                                                         |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| The intent of this review was to focus on the technical design.<br>However, prior to the FDR we should schedule an assembly review.<br>Target week of May 23rd.                       | Perry         | This was conducted. E. Perry is presenting the results today                                                                                                                                                                                                                                                              |
| Need to verify the reasonableness of the assumption that the inboard diverter tiles at the CHI gap will not see significant heating on both the horizontal and the vertical surfaces. | Bell          | The heat flux deposited on the PFCs will be<br>controlled by the NSTX physics program (e.g.,<br>advanced divertor operations) and will be<br>maintained within allowables based on the<br>choice of materials, geometry, and cooling.<br>Allowables resulting from the design will be<br>provided. (Ref. GRD para. 3.1.1) |
| CTD-425 is acceptable from the test data and calculations provided.<br>For the FDR, this insulation performance should be described clearly.                                          | Heitzenroeder | Titus is presenting the results today                                                                                                                                                                                                                                                                                     |
| Peak stress (slide #32) in FSW joint is 124 mPa. This is compared to which allowable? Consider methods to reduce this peak value.                                                     | Heitzenroeder | This is based on the weaker material CDA 107, based on tests                                                                                                                                                                                                                                                              |







June 22 - 24, 2011

Tuesday, June 21, 2011

## Conclusion

- The analysis performed to date supports the Final Design being presented today
- The Final Design is >90% complete.
- The project is ready to begin procurement, fabrication and Installation .

